a 6.7 volume of air, initially at 23 degrees celsius and .98 atm, is compressed to 2.7 L while heated to 125 degrees celsius. What is the final pressure?

Answers

Answer 1
Data:

V1 = 6.7 liter
T1 = 23° = 23 + 273.15 K = 300.15 K
P1 = 0.98 atm

V2 = 2.7 liter
T2 = 125° = 125 + 273.15 K = 398.15 K
P2 = ?

Formula:

Combined law of ideal gases: P1 V1 / T1 = P2 V2 / T2

=> P2 = P1 V1 T2 / (T1 V2)

P2 = 0.98 atm * 6.7 liter * 398.15 K / (300.15K * 2.7 liter)

P2 = 3.22 atm

Related Questions

When a 61 kg cheerleader stands on a vertical spring, the spring compresses by 5.8 cm. when a second cheerleader stands on the shoulders of the first, the spring compresses an additional 4.2 cm?

Answers

Let m kg be the mass of the second cheerleader.

By definition, the spring constant is
[tex]k = \frac{(61 \, kg)(9.8 \, m/s^{2})}{0.058 \, m} = \frac{(61+m \, kg)(9.8 \, m/s^{2})}{0.058+0.042 \, m} [/tex]

Therefore
m + 61 = (0.1)*(1.0517 x 10³) = 105.172
m = 44.172 kg

Answer: 44.2 kg
Final answer:

Using the principles of Hooke's Law and potential energy, we calculate the spring constant when a 61 kg cheerleader stands on the spring, causing it to compress. When a second cheerleader stands on the first, causing further compression, we can calculate their combined weight.

Explanation:

The subject of this question is Physics, specifically the principles of Hooke's Law and the potential energy associated with a spring. In this case, we will use Hooke's law (F = kx) to figure out the spring constant first. The Spring constant (k) can be determined by dividing the force (which is equal to the weight of the cheerleader) by the compression in the spring. Hence, when a cheerleader of 61 kg stands on the spring, her weight would exert a force equal to mass x gravity, i.e, 61 kg x 9.8 m/s² = 598.8 N. As this force causes a compression of 5.8 cm or 0.058 m in the spring, the spring constant k can be calculated by 598.8 N / 0.058 m which is approximately 10324 N/m.

When the second cheerleader stands on the shoulders of the first, the spring compresses an additional 4.2 cm (or 0.042 m). The combined force exerted on the spring is the weight of both cheerleaders. If we denote x as the unknown weight of the second cheerleader, then the new force is (61kg + x kg) * 9.8m/s². This force leads to a compression of 0.058m + 0.042m = 0.1m. By again using Hooke's law, we can say (61kg + x kg) * 9.8m/s² = 10324 N/m * 0.1 m. Solving this equation will yield the weight of the second cheerleader.

Learn more about Hooke's Law here:

https://brainly.com/question/35616799

#SPJ12

How many moles of glycerin (C3H5(OH)3) are consumed in this reaction?

14KMnO4 + 4C3H5(OH)3 es001-1.jpg 7K2CO3 + 7Mn2O3 + 5CO2 + 16H2O

Answers

Ans: 0.709 moles glycerin

The given reaction is:

14KMnO4 + 4C3H5(OH)3 → 7K2CO3 + 7Mn2O3 + 5CO2 + 16H2O

a) Based on the reaction stoichiometry:

5 moles of CO2 requires 14 moles of KMnO4

Therefore, 0.886 moles of CO2 would correspond to:

= 0.886 moles CO2 * 14 moles KMnO4/5 moles CO2

= 2.48 moles

b) Again from the reaction stoichiometry:

5 moles of CO2 requires 4 moles of glycerin

therefore, 0.886 moles of CO2 would consume:

= 0.886 moles CO2 * 4 moles glycerin/5 moles CO2

= 0.709 moles

Answer:

2.48  0.709

i got it right on edg so enjoy

Breathing and acid-base balance lab report 10 1. what was the starting color and final color for beaker 1? what was the time to change to the final color (include your units)?

Answers

the oldest section of seafloor?

Acetaminophen (pictured) is a popular nonaspirin, "over-the-counter" pain reliever. what is the mass % (calculate to 4 significant figures) of each element in acetaminophen?

Answers

Acetaminophen as a chemical formula of C8H9NO2. The molar masses are:

C8H9NO2 = 151.163 g/mol

C = 12 g/mol

H = 1 g/mol

N = 14 g/mol

O = 16 g/mol

 

TO get the mass percent, simply multiply the molar mass of each elements  with the number of the element divide by the molar mass of acetaminophen, that is:

%C = [(12 * 8) / 151.163] * 100% = 63.50%

%H = [(1 * 9) / 151.163] * 100% = 5.954%

%N = [(14 * 1) / 151.163] * 100% = 9.262%

%O = [(16 * 2) / 151.163] * 100% = 21.17% 

Tris {(hoch2)3cnh2} is one of the most common buffers used in biochemistry. a solution is prepared by adding enough tris and 12 m hcl(aq) to give 1.00 l of solution with [tris] = 0.30 m and [trish+] = 0.60 m. what is the ph of this buffered system if the pkb is 5.92?

Answers

Given that,

The concentration of TRIS = 0.30 M

The concentration of TRIS+ = 0.60 M

Kb = 1.2 x 10^-6

pKb = -log Kb = - log (1.2 x 10^-6) = 5.920

Now, by using the Hendersonn equation,

pH = pKa + log TRIS+/TRIS = 5.920 + log (0.60/0.30) = 6.221

pOH=14-pH=14-6.221 = 7.779

Given:

Buffer system : Tris/TrisH+

[Tris] = 0.30 M

[TrisH+] = 0.60 M

pKb = 5.92

To determine:

pH of the buffer

Explanation:

The pH of a buffer can be obtain using the Henderson-Hasselbalch equation:

pH = pKa + log[Base]/[Acid]

In this case the conjugate base = [Tris]

Acid = [TrisH+]

Now, pKa = 14-pKa = 14-5.92 = 8.08

pH = 8.08 + log[0.30]/[0.60] = 7.778

Ans: pH of the buffer = 7.78

what is the energy of a photon of green light with a frequency of 5.80 x 10^14/s

Answers

i'm not understanding that much. but if i'm right the answer is 3.84 x 10^-19 J

We have that for the Question "what is the energy of a photon of green light with a frequency of 5.80 x 10^14/s" it can be said that the energy of a photon of green light with a frequency of 5.80 x 10^14/s is

[tex]E=3.8454*10^{-19}[/tex]

From the question we are told

what is the energy of a photon of green light with a frequency of 5.80 x 10^14/s  

Generally the equation for the energy of a photon  is mathematically given as

[tex]E=hf\\\\Therefore\\\\E=hf\\\\E=6.63*10^{-34}* 5.80 x 10^{14}\\\\[/tex]

[tex]E=3.8454*10^{-19}[/tex]

Therefore

the energy of a photon of green light with a frequency of 5.80 x 10^14/s is

[tex]E=3.8454*10^{-19}[/tex]

For more information on this visit

https://brainly.com/question/23379286

If the pressure, volume, and temperature of a gas are known, which can most likely be found by using the ideal gas law?
the molar amount of the gas
the partial pressure of the gas
the standard temperature and pressure
the molar mass

Answers

Answer : The correct option is, the molar amount of the gas.

Explanation :

Ideal gas law : In this law, the pressure, temperature, volume and moles of gas are related to each other by the simple formula.

The ideal gas equation is,

[tex]PV=nRT[/tex]

where,

P = pressure of the gas

V = volume of the gas

T = temperature of the gas

n = number of moles of gas or molar amount of gas

R = Gas constant

According to the question, If the pressure, volume, and temperature of a gas are known then the molar amount of the gas  can be found by using the ideal gas law.

Hence, the correct option is, the molar amount of the gas.

We have that, given the gas law (PV=nRT), Pressure ,Volume and Temperature we find [tex]n=\frac{PV}{RT}[/tex].

The molar amount of the gas is most likely be found, given the Ideal gas law equation.

Option A.

Ideal gas law

Generally the equation for the ideal gas  is mathematically given as

PV=nRT

P=Pressure

V=Volume

n= the amount of substance of gas(the molar amount of the gas).

R=Gas constant

T=Temperature

This ideally looks at the relationship between the temperature the pressure and Volume of a gas in a system.

Therefore,From the ideal gas equation if the pressure, volume, and temperature of a gas are known, N is given as

[tex]n=\frac{PV}{RT}[/tex]

The molar amount of the gas(Number of moles).

Option A.

For more information on Ideal gas law visit

https://brainly.com/question/25290815

A gas mixture of 50% co, 25% co2, and 25% h2 (by volume) is fed to a furnace at 900°c. determine the composition of the equilibrium co–co2–h2– h2o gas if the total pressure of the gas in the furnace is 1 atm.

Answers

We have to take some data like the energy needed for the formation of CO2, H2O, CO

We know that Go = H - TS

1kJ/mol = 238.846 cal/mol

C + 1/2O2 ------> CO                    Go1= -26700 - 20.95 T cal/mol

H2 + 1/2 O2 -------> H2O              Go2=-58900 + 13.1 T cal/mol

C + O2 ----------> CO2                 Go3= -94200 - 0.2 T cal/mol

Now the reaction gives

                     H2   + CO2 ------> H2O + CO

Now Go4 = -8600 - 7.65 T cal/mol

At T( K )= 900oC = 900 + 273 = 1173 K , Go4= -8693 +7.65 X 1173 = 373.45 cal

Go4 = -RT ln K

ln K = (-373.45/ -(1.986 X 1173))

K = e0.160 = 1.173

                 H2      +       CO2 ------>        H2O +    CO

intial mole   0.25       0.25 ------->        X   +     0.5

After reaction (0.25 -X)     (0.25-X)             X          (0.5+X)

Now calculate for X, we know that K = product / reactant

K = (0.5+ X)* X / (0.25-X ) * (0.25-X)                     now K= 1.17

So,    1.173(0.0625- 0.5X-X2) = 0.5X- X2

0.0733- 1.0865X+ 0.173X2= 0

Calculate the value of X using quadratic equation

value of X = 6.81 % =0.068

So P(H2O)= 0.068

Total pressure = P(CO) + P(CO2) + P(H2) + P(H2O)=1

Now putting the value of X in the following

P(H2) = P(CO2)= 0.25- 0.068= 0.182

P(CO) = 0.5- 0.068= 0.568

Final answer:

The composition of the equilibrium gas mixture in the furnace can be determined by using thermochemistry and equilibrium principles, setting up equations based on the initial gas composition and the balanced reactions, and solving for the equilibrium constants.

Explanation:

This is a thermochemistry and equilibrium problem in chemistry. The balanced equations for the reactions in the furnace are:
CO + H2 = CO2 + H2O
CO2 + H2 = CO + H2O
The first equation represents oxidation of carbon monoxide and the second equation represents the reduction of carbon dioxide. For a given reaction, the quantity of a product at equilibrium is determined by the Gibbs free energy, which in turn is dependent on the temperature, pressure, and initial concentrations/moles of the reactants.

In this scenario, the initial volume percentages translate into mole fractions since gases in a mixture occupy volume proportionally to their mole fractions. The equilibrium concentrations (or in this case mole fractions) of each gas can be determined by setting up an expression for each reaction's equilibrium constant (K) in terms of partial pressures and then solving the system of equations represented by the equilibrium constants and the initial quantities of gases, which are conserved.

Learn more about Chemical Equilibrium here:

https://brainly.com/question/3920294

#SPJ3

Similarity between all mixtures and compounds is that both what

Answers

Similarity between all mixtures and compounds is that both require 2 or more elements or substances.

The primary method in which two connected objects transfer energy by heat flow is _____.

Answers

 Conduction is heat tranfer through physical contact. Hope this helps. :)
The primary method in which two connected objects transfer energy by heat flow is conduction.

How are the atomic number and the number of protons related to each other? how do the number of protons, number of neutrons, and the mass number relate to each other? what is the one thing that determines the identity of an atom (that is, whether it is an oxygen atom or a carbon atom, etc.)?

Answers

The atomic number (Z) uniquely identifies a chemical element. In an uncharged atom, the atomic number is also equal to the number of electrons.

The atomic number, Z, should not be confused with the mass number, A, which is the number of nucleons, the total number of protons and neutrons in the nucleus of an atom.

In this video Kristine Born explains this two concepts in more detail.

a student forgot to include the 12 h2o when calculating the formula mass of the compound. how will the calculated percent yield be affected?

Answers

If the student forgot to calculate 12 H2O molecule from the compound, that means the compound molecular mass used will be much lower than it should. If the molecular mass calculated lower than it should, then the percent yield would be increased.
If the student fixes the compound mass, then the yield will become lower than the first result.
Final answer:

Forgetting to include the 12 H2O in formula mass calculations will result in a falsely high percent yield. Proper percent yields range from 0% to 100%, and accurate calculations are essential for true values.

Explanation:

If a student forgets to include the 12 H2O when calculating the formula mass of a compound, their calculation of the formula mass will be significantly lower than it should be. Consequently, if they use this incorrect lower mass to calculate the percent yield, they would end up with a percent yield that is mistakenly higher than the actual value. At extremes, it might even exceed 100%, which is typically a clear sign of an error in calculation or the presence of impurities which might be solvents like water. The correct calculation of formula mass including the hydrate water is essential to accurately determine the percent composition of the compound and subsequently the percent yield from a given reaction.

It is important to recognize that proper percent yields are between 0% and 100%; yields greater than 100% usually point towards experimental errors or contaminants within the product. A high percent yield, for instance, 80%-90%, is generally deemed good to excellent, while a 50% yield is considered fair. Including all components such as water in hydrates is crucial for correct percent composition calculations.

Assign an oxidation number to each element in the reaction.

CO(g) + 2H2(g) → CH3OH(g)

In CO, the oxidation number of C is _, and that of O is _.
In H2, the oxidation number of H is _.
In CH3OH, the oxidation number of C is _, that of O is _, and that of H is _.

Answers

Final answer:

In CO, the oxidation number of C is +2 and that of O is -2. In H2, the oxidation number of H is 0. In CH3OH, the oxidation number of C is -2, that of O is -2, and that of H is +1.

Explanation:

To assign an oxidation number to each element in the reaction of CO(g) + 2H2(g) → CH3OH(g), we follow the standard rules for oxidation states.

In CO, carbon is more electropositive compared to oxygen, so while oxygen typically has an oxidation number of -2, carbon must balance this with a +2.

In H2, as an elemental form, hydrogen has an oxidation number of 0.

In CH3OH (methanol), the carbon atom is bonded to one oxygen atom and three hydrogen atoms. Following the rules, oxygen has an oxidation number of -2, and each hydrogen atom has an oxidation number of +1. Since carbon is bonded to four hydrogen atoms and one oxygen atom, the total for hydrogen is +3 (3*+1) and for oxygen is -2. To balance the charges, carbon must have an oxidation number of -2 in CH3OH.

Final answer:

The oxidation numbers in CO are +2 for carbon and -2 for oxygen. Hydrogen in H2 has an oxidation number of 0. In CH3OH, carbon's oxidation number is -2, oxygen's is -2, and hydrogen's is +1 for each atom.

Explanation:

The oxidation numbers for the elements in the given compounds and molecule can be assigned following certain rules. Let's go through each substance in the reaction CO(g) + 2H2(g) → CH3OH(g).

In CO, carbon (C) is more electropositive than oxygen (O), so it has a lower oxidation number. By default, oxygen has a -2 oxidation state in most compounds (except peroxides and other special cases). Since the molecule is neutral, C must have an oxidation state of +2 to balance oxygen's -2.In H2, hydrogen is in its elemental form, so its oxidation number is 0.In CH3OH (methanol), for oxygen, the oxidation state is typically -2. Each hydrogen has an oxidation state of +1. There are four hydrogens totaling +4 and one oxygen at -2, thus carbon must have an oxidation state of -2 to balance.

Therefore, in CO, the oxidation number of C is +2, and that of O is -2. In H2, the oxidation number of H is 0. In CH3OH, the oxidation number of C is -2, that of O is -2, and that of H is +1.

A circuit contains two devices that are connected in parallel. If the resistance of one of these devices is 12 ohms and the resistance of the other device is 4 ohms, the total resistance of the two devices is
A. 0.333 ohms.
B. 16 ohms.
C. 3 ohms.
D. 0.0625 ohms

Answers

the answer is c. 3 ohms.

Answer: The correct option is 3 ohms.

Solution:

When resistors are connected in parallel the total resistance is given by :

[tex]\frac{1}{R_{total}}=\sum_{i=1}^n\frac{1}{R_1}+\frac{1}{R_2}+...\frac{1}{R_n}[/tex]

[tex]R_1=12 ohm[/tex]

[tex]R_2=4 ohm[/tex]

[tex]\frac{1}{R_{total}}=\frac{1}{12}+\frac{1}{4}=3 ohm[/tex]

The total resistance of the two devices is 3 ohm .

In the sn2 experiment, what was the purpose of washing the distilled product with 5% naoh

Answers

The purpose of washing the product with NaOH is simply to neutralize any acid which remained or leaked after the 1st initial separation. The NaOH base reacts with the acid to form neutralization reaction products which are soluble in water.

Final answer:

The distilled product in an SN2 experiment is washed with 5% NaO for the purpose of extracting and neutralizing acidic impurities to produce a pure product. This relates to the use of NaOH during titration experiments where it is used to neutralize an acid and find its acidity.

Explanation:

In the SN2 experiment, the distilled product was washed with 5% NaOH for the purpose of neutralization and extraction of acidic impurities. During the reaction performed, there might be some acidic byproducts which can affect the final result or the purity of the product. The washing step with sodium hydroxide, which is a base, neutralizes them and helps to obtain a pure product. This is similar to the provided titration examples where an acid is neutralized by a base. For example, in titration, HCl is neutralized by NaOH.A closely related real-world application of this concept is the use of NaOH (sodium hydroxide) during titration experiments. Here, NaOH is used to determine the acidity of an unknown solution. As indicated in the information, different solutions and volumes can be used to reach the so-called 'equivalence point' or the point at which the acid is fully neutralized by the base.

Learn more about Chemistry Lab Technique here:

https://brainly.com/question/29296260

#SPJ11

Iven the parent compound, draw the mass spectrum fragment that is observed at m/z 77. include any hydrogen atoms and the charge.

Answers

The first step is to determine each compound's total molar mass by adding up all of its constituent parts.

What are compounds?

Compounds are defined as anything made up of similar molecules with atoms from two or more different chemical elements. Chemical connections that are challenging to break are created when the elements interact with one another.

Chlorobenzene, the chemical on the left, has a mass of 112 and is composed of 5 carbons (12 g/mol), 1 chlorine (35 g/mol), and 5 hydrogens (1 g/mol). The right-hand chemical (2-chloropentane), which consists of 3 carbons, 1 chlorine, and 7 hydrogens, has a mass of 78. The mass loss for chlorobenzene is 112 - 77 = 35. The mass loss for 2-chloropropane is 78 - 77 = 1. The loss of a hydrogen ion results in a loss of one unit. This is typical and is referred to as the "M-1 peak." Therefore, the dehydrogenated molecular ion is represented by the 77 m/z fragment.

Thus, the first step is to determine each compound's total molar mass by adding up all of its constituent parts. '

To learn more about compounds, refer to the link below:

https://brainly.com/question/13516179

#SPJ2

How many electrons does each oxygen atom gain during the course of this reaction?

Answers

The chemical reaction is the oxidation of calcium metal by molecular oxygen. During the reaction, calcium metal is oxidized, that is, loses electrons and oxygen is reduced, that is gains electrons.
During the reaction, the calcium atom donate two electrons in order to become stable and the oxygen atom accepts these two electrons. Therefore, during the reaction, EACH OXYGEN ATOM GAINS TWO ELECTRONS.

Final answer:

An oxygen atom gains two electrons during a chemical reaction to form an oxide ion, achieving a stable electron configuration with ten electrons overall.

Explanation:

During a chemical reaction, an oxygen atom typically gains two electrons to achieve a stable electron configuration with a total of ten electrons. This is because a neutral oxygen atom has six valence electrons and needs two more to fill its outer shell, forming an oxide ion (O2-) with an electron configuration of 1s² 2s² 2p¶. In the context of oxidation-reduction (redox) reactions, the principle that the number of electrons lost must equal the number of electrons gained is fundamental, ensuring that charge is conserved.

If a mixture contains 75% of one compound and 25% of its enantiomer what is the
e.e

Answers

The enantiomeric excess (ee) of a mixture is an indicator of the compound's purity. A 50/50 (racemic) mixture has an ee of 0% while a single enantiomer has an ee of 100%. Therefore, take the major enantiomer compound in the mixture, 75%, and subtract its minor enantiomer contributor, 25%, to get an ee of 50%.

Final answer:

The enantiomeric excess (ee) of a mixture containing 75% of one compound and 25% of its enantiomer is 50%, calculated using the formula [(% more abundant enantiomer - 50) × 100] / 50.

Explanation:

If a mixture contains 75% of one compound and 25% of its enantiomer, the enantiomeric excess (ee) can be calculated using the formula: ee = [(% more abundant enantiomer - 50) × 100] / 50. In this scenario, the mixture consists of 75% of one enantiomer and 25% of its counterpart. To calculate the enantiomeric excess, you subtract 50 from the percentage of the more abundant enantiomer, which is 75%, and then multiply by 100, and divide the result by 50.

Therefore, the ee = [(75-50) × 100] / 50 = [(25 × 100) / 50] = 50%. This means that the mixture has a 50% enantiomeric excess of the more abundant enantiomer.

Using alcohols as solvents offers the advantage of using ro- ions which are somewhat stronger ______ than the hydroxide ion.

Answers

The answer is "Ro-ions which are somewhat stronger bases than the hydroxide ion.
These ro-ions are also known as alkoxide ions, and these are stronger bases. the reason behind this is that the alcohols are weaker acids than the water. Alcohols are also used as solvent in some organic reactions and this offers and advantage to use ro-ions.

Which term labels solution?

Answers

What are the answer? For me to help you I need to see them

structures with all atoms in the same relative position to one another, but the distribution of electrons around them is different

Answers

Final answer:

Resonance structures differ in electron arrangement around a fixed atom layout, while structural isomers have different atom arrangements and properties, like butane and isobutane. Electron-pair geometry can differ from molecular structure based on lone electron pairs' presence.

Explanation:

The structures mentioned, where all atoms are in the same relative positions but the distribution of electrons is different, describe resonance structures. These are Lewis electron structures that showcase different arrangements of electrons around a set of atoms that do not move. In contrast, structural isomers share the same chemical formula but have different physical placement of atoms and/or chemical bonds, leading to different molecular structures and properties. An example of structural isomers are butane and isobutane (C4H10), each having unique uses due to their differing arrangements. Additionally, the difference between electron-pair geometry and molecular structure depends on whether there are lone electron pairs around the central atom in a molecule.

Correct option is c) Resonance Structures describe molecules with the same atom arrangement but different electron distributions

In chemistry, structures where all atoms are positioned the same relative to one another, but the distribution of electrons around them differs, are known as resonance strcutures.

Resonance structures have the same arrangement of atoms but show different arrangements of electrons.

These forms are different ways of representing a single molecule and are connected by a double-headed arrow, indicating that while the electron distribution may vary, the core structure remains the same.

Thus the correct option is c) resonance structures

Complete question is - Structures with all atoms in the same relative position to one another, but the distribution of electrons around them is different is referred to as a)Condensed formulas b)Skeletal formulas c) Resonance structures d) Lewis structures

How many liters are in 2.751 ounces? Use the conversion factor: 1 liter = 33.814 ounces Rounded to the result to the correct number of significant figures. Express your answer in scientific notation. Format your answer using the following template to earn credit: "XXX.XXXX x 10^-+XX units" Replace the X's with digits, as necessary Replace "units" with the correct unit abbreviation Replace "-+" with either "+" or "-", as necessary

Answers

?L=2.751ounces x 1Liter/33.814ounces
(in the equation ounces cancel ounces leaving the unit Litters. Therefore multiply 2.751 by 1Liter/33.814 to get your final answer but not the least.)
0.08136L
 
Scientific notation : 008.136 x 10^-2
                               8.136 x 10^-2 Liters
 

Calculate the nuclear binding energy for 5525mn in megaelectronvolts per nucleon (mev/nucleon).

Answers

Binding energy per nucleon for 5525mn is 8.95 MeV/nucleon. The nuclear binding energy for a nuclide like 55²25Mn can be found by determining the mass defect from experimental mass and calculated mass of nucleons. Multiplying the mass defect by the conversion factor of 931 MeV/amu gives the total binding energy, which when divided by the number of nucleons, yields the binding energy per nucleon.

To calculate the nuclear binding energy for 5525Mn, we need to know the experimental mass of the nuclide and use the mass defect to find the total nuclear binding energy, which can then be divided by the number of nucleons to get the binding energy per nucleon. First, please find the experimental mass of 5525Mn in atomic mass units (amu) from the provided Table or credible sources. The mass defect is the difference between the sum of the individual masses of protons and neutrons and the actual mass of the nucleus.

Once the mass defect (Δm) is determined, we multiply it by the mass-energy equivalence conversion factor of 931 MeV/amu to get the total binding energy (E) in megaelectronvolts (MeV). The formula is:

E = Δm x 931 MeV/amu

To find the binding energy per nucleon, simply divide the total binding energy by the number of nucleons (A). The formula is:

Binding energy per nucleon = E / A

For instance, if the mass defect for 5525Mn turns out to be 0.528462 amu, the total binding energy would be:

E = 0.528462 amu x 931 MeV/amu = 492 MeV

And the binding energy per nucleon would be:

Binding energy per nucleon = 492 MeV / 55 nucleons = 8.95 MeV/nucleon

Binding energy per nucleon for 5525mn is 8.95 MeV/nucleon.

subatomic particles has a mass of 1.7 x 10-27 kg

Answers

You haven't really asked a question, but the subatomic particle you've referenced is either a neutron, or a proton. I say that since the mass of those two particles are:
  proton = 1.6726 x 10^-24 grams
  neutron = 1.6740 x 10^-24 grams
both of which round to 1.7 x 10^-24 grams which is 1.7 x 10^-27 kilograms.

Explain the collision theory, in your own words, and what is necessary for a collision to be successful

Answers

Collision theory basically explains that gas-phase chemical reactions occur when molecules collide with sufficient kinetic energy.

"Calculate the volume, in mL. of the 1.0 M NaOH stock solution needed to prepare 250 mL of 0.1 molar NaOH."

Answers

A molar unit will be equal to moles of solute per 1 liter of solvent. Then, in 1 M NaOH solution, there will be 1 moles NaOH for every 1-liter solution. To answer this question, you need to know how many moles of NaOH you need for 250ml of 0.1 M NaOH. The same amount of molecule will be needed to ake the solution. The formula would be:

molar concentration = moles of molecule / liters of solvent
moles of molecule = molar concentration / liters of solvent

moles of molecule1 =moles of molecule2
1M * X = 0.1 M * (250/1000ml)
X= 0.1 M / 1M * (1/4)
X= (1/10) * (1/4)= 1/40 liters= 25ml
Final answer:

You need 25 mL of the 1.0 M NaOH stock solution to prepare 250 mL of 0.1 M NaOH.

Explanation:

To calculate the volume of the 1.0 M NaOH stock solution needed to prepare 250 mL of 0.1 M NaOH, we need to apply the formula for dilution: M1V1 = M2V2. Here, M = molarity, V = volume, 1 refers to the initial condition (stock solution), and 2 refers to the final condition (prepared solution).

Applying the known values to the formula, we get:  (1.0 M) * V1 = (0.1 M) * (250 mL). Thus, V1 (volume of the stock solution needed) = 25 mL.

Learn more about Dilution here:

https://brainly.com/question/28548168

#SPJ11

How much heat is released if 7.15 g cao(s) is added to 152 g of h2o(l)? cao(s) + h2o(l) → ca(oh)2(s) δh°rxn = –64.8 kj/mol?

Answers

First, we calculate the number of moles of each reactant using the formula:

Moles = mass / molecular weight

CaO:
Moles = 7.15/56 = 0.128 

Water:
Moles = 152/18 = 8.44

The reaction equation shows that the reactants must be present in an equal number of moles, so CaO will be the limiting reactant and 0.128 mole of calcium hydroxide will form.

The energy released is given by:

Heat of reaction * number of moles
= -64.8 * 0.128
= -8.29 kJ

8.29 kJ of energy will be released
Final answer:

The heat released when 7.15 g CaO(s) is added to 152 g H2O(l) is -8.28 kJ.

Explanation:

According to the given equation and the enthalpy change for the reaction (ΔHrxn), we can calculate the amount of heat released when 7.15 g of CaO(s) is added to 152 g of H2O(l). First, we need to convert the masses of CaO and H2O to moles. The molar mass of CaO is 56.08 g/mol and the molar mass of H2O is 18.02 g/mol. So, the number of moles of CaO is 7.15 g / 56.08 g/mol = 0.1275 mol and the number of moles of H2O is 152 g / 18.02 g/mol = 8.4417 mol.

Next, we can use the stoichiometric coefficients of the balanced equation to determine the moles of products formed. From the equation, we see that 1 mole of CaO reacts to form 1 mole of Ca(OH)2. So, the moles of Ca(OH)2 formed is also 0.1275 mol.

Finally, we can use the enthalpy change value (ΔHrxn) to calculate the heat released. Since the reaction releases -64.8 kJ/mol, we can multiply this value by the number of moles of Ca(OH)2 formed (0.1275 mol) to get the heat released: -64.8 kJ/mol * 0.1275 mol = -8.28 kJ.

Learn more about Heat released in a chemical reaction here:

https://brainly.com/question/31230996

#SPJ11

Consider that cuo(s) + h2so4(aq) reacts to give cuso4(aq) and cuo(s) + k2so4does not give a product.

Answers

Answer : 1) CuO is a basic salt and therefore reacts with sulfuric acid to give copper (II) sulfate and water.

2) CuO is very stable and therefore does not dissociate in water and therefore cannot react with the sulfate ion in potassium sulfate.

In first case, [tex]CuO_{(s)} + H_{2}SO_{4}_{(aq)} ----> CuSO_{4}_{(s)} + H_{2}O_{(g)}[/tex]

Wherein when CuO was made to react with potassium sulphate it didn't had any product because CuO was not ionised by water in presence of potassium sulphate.

The lattice energy of CuO (s) is very high, so it does not dissolve in water to give its ions. But it is a Bronsted–Lowry base thus it can react with the Bronsted–Lowry acid such as sulphuric acid but not with Bronsted–Lowry base [tex]{{\mathbf{K}}_{\mathbf{2}}}{\mathbf{S}}{{\mathbf{O}}_{\mathbf{4}}}[/tex].

Further Explanation:

The definition of acids and bases can be expressed in many ways based on different theories, which are as follows:

• According to Arrhenius theory, acid is defined as the one which produces hydrogen ions in a solution, while the base is defined as the one which produces hydroxide ions in a solution.

• According to Bronsted–Lowry theory, the acid in the reaction donates a proton while a base is one that accepts a proton.

• According to Lewis theory, the acid in the reaction accepts a pair of electrons while a base donates a pair of electrons.

Lattice energy is termed as the amount of energy released when the ions that exist in gaseous state combine to form compound. The lattice energy of a compound is inversely related to the size of the ions present in it.

The size of [tex]{\text{C}}{{\text{u}}^{2+}}[/tex]and [tex]{{\text{O}}^{2-}}[/tex]is small and therefore lattice energy of CuO(s) is very high. Thus it does not dissolve in water to give its ions. But since it is a Bronsted–Lowry base thus, it can accept the hydrogen ions from sulphuric acid and form [tex]{\text{CuS}}{{\text{O}}_{\text{4}}}[/tex]and [tex]{{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}[/tex].

Therefore, the complete reaction is,

[tex]{\text{CuO}}\left(s\right)+{{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\left({aq}\right)\to{\text{CuS}}{{\text{O}}_{\text{4}}}\left({aq}\right)+{{\text{H}}_{\text{2}}}{\text{O}}\left(l\right)[/tex]

But [tex]{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\left({aq}\right)[/tex] is not a Bronsted–Lowry acid. Therefore CuO (s) can not react with [tex]{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\left({aq}\right)[/tex]in a way as it does with the sulphuric acid.

Learn more:

1. Salts produced from neutralization reaction: https://brainly.com/question/10528663

2. Determine the reason that explains salt produce colored flame?: https://brainly.com/question/4615928

Answer details:

Grade: Senior school

Subject: Chemistry

Chapter: Acids and bases

Keywords: Acids, bases, lattice energy, CuO, k2so4, Bronsted–Lowry theory, proton acceptor, proton donor, h2so4, k2so4.

A 26.6 g sample of aluminum at 100.4 °C is added to 100.6 g of water at 21.5 °C in a constant pressure calorimeter. What is the final temperature of the water in °C? The specific heat capacity of aluminum is 0.903 J/goC.

Answers

Given:
m₁ = 26.6 g, the mass of aluminum
T₁ = 100.4 °C, the temperature of the aluminum
c₁ = 0.903 J/(g-°C), the specific heat of aluminum

m₂ = 100.6 g, the mass of water
T₂ = 21.5 °C, the temperature of water
The specific heat of water is c₂ = 4.184 J/(g-C)

Let T =  the final temperature of the water and aluminum.
Calculate heat loss of the aluminum.
Q₁ = (26.6 g)*(0.903 J/(g-C))*(100.4-T C) = 24.1098(100.4 - T)  J

Calculate heat gained by the water
Q₂ = (100.6 g)*(4.184 J/(g-C))*(T - 21.5 C) = 420.1904(T - 21.5) J

Conservation of energy requires that Q₁ = Q₂.
Therefore
420.1904(T - 21.5) = 24.1098(100.4 - T)
444.3T = 1.1455 x 10⁴
T = 25.782 °C

Answer: 25.8 °C

Something used to represent a complex idea or process in science is a
1 program
2 microscope
3 hypothesis
4 model

Answers

it is 4 i did this exam 3 is wrong


the answer is

D

A model

Other Questions
What characteristic of the development of the political and social system of feudalism BEST summarizes the life of knights and nobles?A.Chivalry served them as a way to attain positions of power.B.As lords, they constructed large castles and raised armies.C.They were mainly involved in manor duties and competing in tournaments.D.As vassals, they swore loyalty and provided military service. what is the term for the theoretical concept that a drug would have all good effects and qualities and no negative effects or qualities A. Desires effect B. Ideal drug C. Margin of safety D. Pharmacodynamics The proceeds from a saturday car wash are directly proportional to the number of cars washed. the total after 7 cars is $140. how much is raised if 60 cars are washed? Write an equation of the line with the given slope, m, and y-intercept left parenthesis 0 comma b right parenthesis(0,b). While your personality may cause certain tendencies, it's your __________ that mostly guides your behavior. Which is not an essential characteristic of high-quality day care? Erik has a five-dollar bill. He uses it to pay for a soda and a hamburger. What form of financial exchange is this? janet's recipe calls for 6/8 cup of milk. what is this fraction in simplest form?2/4 2/3 3/4 1/3 Read the excerpt below from the poem "Exile" by Julia Alvarez and answer the question that follows.a hurried bag, allowing one toy apiece,her red eyes belying her explanation:a week at the beach so Papi can get some rest.She dressed us in our best dresses, party shoes.Which quotation from the excerpt above is an example of foreshadowing?"red eyes belying her explanation""one toy apiece""a week at the beach""Papi can get some rest" what do you think was Sinclair's purpose in writing this piece? Which of the following is an example of a closed question? Did you like the play? How did you decorate the cake? When are you going to the party? How do you get to Fourth Street? What type of irony is seen in the situation where the reader knows Perceval is the knight King Arthur seeks, but no one in the story knows who he is? Which choice has a clear pronoun reference? A) Dad asked Alex where his shoes were. B) Craig and Bobby like to sit on his front porch. C) Jasmine went to Kayla's house to see her new fish. D) Jason and Rohan went over to his house to play video games. Would a dot plot or a histogram best represent the data presented here? Why? After winning the election of 1800, thomas jefferson used his victory to transform his fledgling political party into a viable, long-term organization to become known as the __________, whereas the supporters of john adams and alexander hamilton united around the federalist party. In 1-2 sentences, describe how you would open a new word processing document. Which absolute value function defines this graph? What is a green collar job?A job that works in the forestry industryA job that does something to make America cleaner and more energy efficientA job that retrofits a blue collar job into something more modernThere is no such thing as a green collar job this is a trick question In 1987, the population of the United States was approximately 2.44 x 108 people. The national debt of the United States in that year was approximately 2.50 x 1012 dollars. In scientific notation, how much debt is this per person? Which of the following elements will have the lowest atomic mass? Hydrogen: 1 proton and no neutrons Nitrogen: 7 protons and 7 neutrons Oxygen: 8 protons and 8 neutrons Neon: 10 protons and 10 neutrons Steam Workshop Downloader