To calculate the volume of potassium permanganate stock solution that the chemist should pour out, we use the formula C1V1 = C2V2. Plugging in the given values, the chemist should pour out 3.00 L of the potassium permanganate stock solution.
Explanation:To calculate the volume of potassium permanganate stock solution that the chemist should pour out, we can use the formula:
C1V1 = C2V2
where C1 and C2 are the concentrations of the stock and working solutions respectively, and V1 and V2 are the volumes of the stock and working solutions. Rearranging the formula, we can solve for V1:
V1 = (C2 * V2) / C1
Plugging in the given values, we have:
V1 = [tex](0.250 M * 3.00 L) / 0.250 M = 3.00 L[/tex]
Therefore, the chemist should pour out 3.00 L of the potassium permanganate stock solution.
The relative rates of reaction of ethane, toluene, and ethylbenzene with bromine atoms have been measured.
The most reactive hydrocarbon undergoes hydrogen atom abstraction a million times faster than does the least reactive one.
Arrange these hydrocarbons in order of decreasing reactivity.
Answer:
Reactivity: Ethyl benzene > Toluene > Ethane
Explanation:
The order of reactivity depends on how easily the most reactive hydrogen can be abstracted.
The order of reactivity of hydrogen is : 1° < 2° < 3° < Benzyllic based on the stabilizing effects like inductive effect, hyperconjugation , resonance effect.
In ethane, all the hydrogen present are 1°.In toluene, the most reactive hydrogen is benzyllic.In Ethyl Benzene, the most reactive hydrogen is 2° as well as benzyllic.Hence the order of decreasing reactivity : Ethyl Benzene, Toluene , Ethane.
To sum up, ethylbenzene > toluene > ethane is the sequence in which reactivity decreases with bromine, and the previously described components are critical in dictating the rates of reaction.
Hydrocarbons containing bromine atoms exhibit varying degrees of reactivity, which can be attributed mainly to the stability of the free radical generated during hydrogen atom abstraction. When an unpaired electron delocalizes across the aromatic ring, a more stable benzyl radical is produced upon abstraction from a benzylic carbon in toluene and ethylbenzene. Compared to toluene, the benzyl radical generated from ethylbenzene has somewhat more reactivity due to this delocalization. Ethane has the lowest reactivity of the three compounds since it doesn't have an aromatic ring or benzylic hydrogens, which leads to the formation of a primary free radical that is much less stable.
If I have a protein with the sequence of amino acids below, what type of structure is being described? Met-Leu-Pro-Ile-His-Ala-Leu
Answer:
Protein's primary structure
Explanation:
The proteins have four different types of structures:
Primary: Describes the sequence of amino acids that is unique for each protein
Secondary: Makes reference to the proteins 3D geometry, it can be alpha-helix (product of the protein coiling) or beta-plated sheet (product of the protein folding).
Tertiary: Refers to the comprehensive 3D structure of the protein. There are many types of tertiary structures, due to hyfrophobic interactions, hydrogen unions, ionic unions.
Quaternary: Resambles the macromolecule formed by many protein molecules. Not all proteins have quaternary structure.
An FM radio station broadcasts electromagnetic radiation at a frequency of 103.4 MHz (megahertz; MHz =106s–1). Calculate the wavelength of this radiation. The speed of light is 2.998 × 108m/s to four significantdigits.
The FM radio station broadcasting at a frequency of 103.4 MHz produces electromagnetic radiation with a wavelength of approximately 2.9 meters.
Explanation:The wave equation, which is used to calculate the wavelength of electromagnetic radiation, is given as: c = fλ where c = 3.00 × 10^8 m/s is the speed of light in vacuum, f is the frequency of the electromagnetic wave in Hz (s⁻¹) and λ is its wavelength in m.
In this scenario, the radio station is broadcasting at a frequency of 103.4 MHz, which equals 103.4 x 10^6 Hz. From the wave equation, we can rearrange and solve for the wavelength: λ = c/f. Therefore the wavelength of the radio wave is approximately λ = 3.00 ×10^8 m/s / 103.4 ×10^6 s⁻¹ = 2.9 meters. So, the FM radio broadcast at a frequency of 103.4 MHz has a wavelength of approximately 2.9 meters in free space.
Learn more about Wavelength Calculation here:https://brainly.com/question/34184937
#SPJ2
The wavelength of an FM radio station broadcasting at a frequency of 103.4 MHz is calculated by using the formula c = λv, where c is the speed of light, λ is the wavelength and v is the frequency. The frequency is converted from megahertz to hertz, and the formula is rearranged to solve for wavelength. The calculated wavelength is approximately 2.913 m.
Explanation:The question asks for the calculation of the wavelength of the radio waves being broadcasted by an FM station at 103.4 MHz. To find the wavelength, we can use the formula c = λv, where c is the speed of light, λ is the wavelength and v is the frequency.
The frequency (v) needs to be in Hz (hertz), so we must first convert the given frequency from megahertz (MHz) to hertz (Hz) - 1 MHz = 10⁸ Hz, therefore 103.4 MHz = 1.034 × 10⁸ Hz.
Then, using the speed of light, c = 2.998 × 10⁸ m/s and rearranging the formula to solve for λ (wavelength), we get λ = c/v.
Substituting the given values, λ = 2.998 × 10⁸ m/s / 1.03 × 10⁸ Hz = 2.913 m.
Learn more about Wavelength calculation here:https://brainly.com/question/34184937
#SPJ2
How will an increase in temperature affect each of the following equilibria? How will a decrease in the volume of the reaction vessel affect each?
(a) 2NH3(g) ⇌ N2(g)+3H2(g) ΔH = 92kJ
(b) N2(g) + O2(g) ⇌ 2NO(g) ΔH =181kJ
(c) 2O3(g) ⇌ 3O2(g) ΔH = − 285kJ
(d) CaO(s) + CO2(g) ⇌ CaCO3(s) ΔH = − 176kJ
An increase in temperature shifts an endothermic reaction to the right and an exothermic reaction to the left. For the reduced volume, it shifts the equilibriums to the side with the fewer moles of gas.
Explanation:The effect of an increase in temperature on the given equilibrium systems depends on the sign of Delta H (ΔH), which represents the heat of reaction. For (a) 2NH3(g) ⇌ N2(g)+3H2(g) with ΔH = 92kJ and (b) N2(g) + O2(g) ⇌ 2NO(g) with ΔH = 181kJ, because these reactions are endothermic (ΔH is positive), an increase in temperature will shift the equilibrium towards the right to absorb the excess heat. On the other hand, reactions (c) 2O3(g) ⇌ 3O2(g) with ΔH = - 285kJ and (d) CaO(s) + CO2(g) ⇌ CaCO3(s) with ΔH = - 176kJ are exothermic (ΔH is negative), an increase in temperature will shift the equilibrium to the left to offset the increase in heat.
Learn more about Le Chatelier's Principle here:https://brainly.com/question/29009512
#SPJ2
Increasing temperature generally shifts endothermic reactions to the right and exothermic reactions to the left. Decreasing volume typically shifts equilibria towards the side with fewer moles of gas. Each reaction's equilibrium shift depends on its enthalpy change (ΔH) and the moles of gases involved.
(a) 2NH₃(g) ⇌ N₂(g) + 3H₂(g) ΔH = 92kJ
Increase in temperature: The reaction is endothermic (ΔH is positive), so an increase in temperature will shift the equilibrium to the right, favoring the formation of N₂ and H₂.Decrease in volume: Decreasing the volume increases pressure. Since there are more moles of gas on the right side, the equilibrium will shift to the left to reduce pressure, favoring the formation of NH₃.(b) N₂(g) + O₂(g) ⇌ 2NO(g) ΔH = 181kJ
Increase in temperature: Similar to (a), the reaction is endothermic, so increasing temperature shifts the equilibrium to the right, favoring the formation of NO.Decrease in volume: Since there is no change in the number of moles of gas (2 moles reactants, 2 moles products), a decrease in volume has little to no effect on the equilibrium position.(c) 2O₃(g) ⇌ 3O₂(g) ΔH = − 285kJ
Increase in temperature: The reaction is exothermic (ΔH is negative), so an increase in temperature will shift the equilibrium to the left, favoring the formation of O₃.Decrease in volume: Decreasing the volume increases pressure. Since there are more moles of gas on the right side, the equilibrium will shift to the left to decrease the pressure, favoring the formation of O₃.(d) CaO(s) + CO₂(g) ⇌ CaCO₃(s) ΔH = −176kJ
Increase in temperature: This reaction is exothermic, so increasing temperature will shift the equilibrium to the left, favoring the formation of CaO and CO₂.Decrease in volume: Decreasing the volume increases pressure. Since CO₂ is the only gas involved, the equilibrium will shift to the right to decrease the amount of gas, favoring the formation of CaCO₃.Equilibrium Position -- A + B = C -- Effect of Dilution
Iodine is sparingly soluble in pure water. However, it does `dissolve' in solutions containing excess iodide ion because of the following reaction: I-(aq) + I2(aq)= I3-(aq) K = 710. For each of the following cases calculate the equilibrium ratio of [I3-] to [I2]. 6.00×10-2 mol of I2 is added to 1.00 L of 6.00×10-1 M KI solution.
The solution above is diluted to __.
To calculate the equilibrium ratio of [I3-] to [I2], first calculate the moles of I3- formed from the moles of I2 added. Then, calculate the concentrations of I3- and I2 in the diluted solution. Finally, divide the concentration of I3- by the concentration of I2 to get the equilibrium ratio.
Explanation:In this problem, we are given the concentration of a solution of KI and the amount of I2 added to the solution. We are asked to calculate the equilibrium ratio of [I3-] to [I2]. To solve this problem, we need to use the K value and the stoichiometry of the reaction.
Calculate the moles of I3- formed from the moles of I2 added.Calculate the concentrations of I3- and I2 in the diluted solution.Finally, divide the concentration of I3- by the concentration of I2 to get the equilibrium ratio.Learn more about equilibrium position here:https://brainly.com/question/31576470
#SPJ12
Final answer:
Calculating the equilibrium ratio of [I3-] to [I2] involves applying the equilibrium constant and concentration changes due to reaction, although the exact effect of dilution cannot be determined without the specified dilution factor.
Explanation:
To calculate the equilibrium ratio of [I3-] to [I2] when 6.00×[tex]10^{-2}[/tex] mol of I2 is added to 1.00 L of 6.00×[tex]10^{-1}[/tex] M KI solution, we first recognize the reaction I-(aq) + I2(aq) ⇒ I3-(aq) with a given equilibrium constant (K) of 710. Initially, [I-] is 0.6 M, and [I2] is 0.06 M. Let x be the change in concentration of I2 and I3- at equilibrium. Hence, [I2] at equilibrium becomes (0.06 - x) M, and [I3-] is x M.
The equilibrium expression for the reaction is K = [I3-]/([I-][I2]). Substituting the known values and solving for x will provide the equilibrium concentrations, allowing us to calculate the desired ratio of [I3-] to [I2]. Unfortunately, the exact dilution factor is not specified in the question, which would be necessary to calculate the effect of dilution accurately.
a student dissolves 20.0 g of glucose into 511 mL of water at 25 C the vapor pressure of pure water at 25 C is 3.13
Answer:
3.12 × 10⁻² atm
Explanation:
A student dissolves 20.0 g of glucose into 511 mL of water. At 25 °C, the vapor pressure of pure water at 25 C is 3.13 × 10⁻² atm. I think the question is: "What is the vapor pressure of the solution?"
According to Raoult's law, the vapor pressure of a solvent above a solution is equal to the vapor pressure of the pure solvent times the mole fraction of the solvent present.
[tex]P_{solution}=P\°_{solvent}X_{solvent}[/tex]
The molar mass of glucose is 180.16 g/mol. The moles corresponding to 20.0 g of glucose are:
20.0 g × (1 mol/180.16 g) = 0.111 mol
The density of water at 25°C is 0.997 g/mL. The mass corresponding to 511 mL of water is:
511 mL × (0.997 g/mL) = 509 g
The molar mass of water is 18.02 g/mol. The moles corresponding to 509 g of water are:
509 g × (1 mol/18.02 g) = 28.2 mol
The total number of moles is 0.111 mol + 28.2 mol = 28.3 mol
The mole fraction of water is:
[tex]X_{solvent}=\frac{28.2mol}{28.3mol} =0.996[/tex]
The vapor pressure of a solvent above the solution is:
[tex]P_{solution}=3.13 \times 10^{-2} atm \times 0.996 = 3.12 \times 10^{-2} atm[/tex]
A block of aluminum with m = 0.5 kg, T = 20oC is dropped into a reservoir at a temperature of 90oC. Calculate (a) the change in stored energy (ΔE), (b) the amount of heat transfer (Q), (c) the change in entropy (ΔS), (d) the amount of entropy transfer by heat and (e) the entropy generation (Sgen,univ) in the system's universe during the heat transfer process.
Explanation:
The given data is as follows.
m = 0.5 kg, [tex]T = 20^{o}C[/tex], [tex]T_{2} = 90^{o}C[/tex]
It is known that specific heat of aluminium is 0.91 kJ/kg.
As we know that, dQ = dU + dw
where, dQ = heat transfer
dU = change in internal energy
dw = work transfer
For the given system, work transfer "w" is 0.
(a) Hence, change in stored energy will be calculated as follows.
Q = [tex]mC \Delta T[/tex]
= [tex]0.5 \times 0.91 \times (90 - 20)[/tex]
= 31.85 kJ
(b) The amount of heat transferred will be equal to change in stored energy.
So, dQ = Q = 31.85 kJ
(c) Change in entropy will be calculated as follows.
dS = [tex]mC ln \frac{T_{2}}{T_{1}}[/tex]
= [tex]0.5 \times 0.91 \times ln \frac{90}{20}[/tex]
= 0.684 kJ/K
(d) Entropy transfer by heat will be calculated as follows.
[tex]\Delta S = \frac{dQ}{dT}[/tex]
= [tex]\frac{31.85}{(20 + 273)}[/tex]
= 0.1087 kJ/K
(e) Entropy change will be calculated as follows.
Entropy change = entropy transfer + entropy generation
[tex]S_{2} - S_{1} = \frac{dQ}{T} + S^{o}_{gen}[/tex]
0.684 kJ/K = 0.187 + [tex]S^{o}_{gen}[/tex]
[tex]S^{o}_{gen}[/tex] = 0.5752 kJ/K
In a separate experiment beginning from the same initial conditions, including a temperature Ti of 25.0°C, half the number of moles found in part (a) are withdrawn while the temperature is allowed to vary and the pressure undergoes the same change from 25.7 atm to 4.10 atm. What is the final temperature (in °C) of the gas?
Final answer:
The problem involves physics principles, specifically the ideal gas law. To solve for the final temperature of a gas when pressure changes and the number of moles is halved from an initial condition, the relationship between pressure and temperature must be considered. However, the type of process (isothermal, isobaric, adiabatic) must be known for an accurate calculation.
Explanation:
The student's question involves finding the final temperature of a gas when the pressure changes and the number of moles is reduced by half, starting from an initial temperature (Ti) of 25.0°C. This problem can be solved by applying the ideal gas law and the concept that, for a given amount of gas, the pressure is directly proportional to the temperature (P ∝ T) when volume and the number of moles are constant. Given the initial conditions and the pressure change from 25.7 atm to 4.10 atm, the process is not specified as isothermal, isobaric, or adiabatic; therefore, additional details from the context of the part (a) of the experiment would be required to provide a comprehensive solution.
To find the final temperature based on the given information, one would have to assume the same type of process that occurred in part (a), where volume doubled and pressure got halved. If we assume a similar relationship between temperature and pressure as was demonstrated before, where if the pressure is halved from 2.50 atm, the temperature must also be halved from 303.15 K, we could calculate the final temperature for the new conditions by adjusting for the fact that the number of moles was halved. However, without explicit mention of whether this happens in an isothermal, isobaric, or adiabatic process, a direct calculation cannot be provided here.
Identify the correct acid and conjugate base pair in this equation: HNO2 + HS - --> NO2- + H2S
Answer:
Acid: HNO₂
Conjugate base: NO₂⁻
Base: HS⁻
Conjugate acid: H₂S
Explanation:
HNO₂ + HS⁻ → NO₂⁻ + H₂S
This is the reaction of nitrous acid with hydrosulfide, to generate nitrite and sulfide acid.
HNO₂ is a weak acid that release the proton to the HS⁻, so the HS⁻ is the base.
Proton that is caught by the HS⁻, produce the H₂S so, if the HS⁻ is the base (accepts a proton from other compound), the H₂S acts like the conjugate acid.
In nitrous acid, which is behaving as an acid (a weak one), the nitrite becomes in the conjugate strong base.
In the equation, HNO2 serves as the Brønsted-Lowry acid, giving up its proton to become its conjugate base, NO2-. HS- is the Brønsted-Lowry base and after accepting a proton, it becomes H2S, its conjugate acid.
Explanation:In the equation HNO2 + HS- --> NO2- + H2S, the acid and its conjugate base can be identified using the concept of the Brønsted-Lowry acid and base. The Brønsted-Lowry acid is a substance that donates a proton (H+) and the Brønsted-Lowry base is a substance that accepts a proton (H+).
Therefore, in this equation, HNO2 is acting as the Brønsted-Lowry acid because it donates a proton to become its conjugate base NO2-. Similarly, HS- is the Brønsted-Lowry base that accepts a proton to become H2S, the conjugate acid. So the acid-conjugate base pair here is HNO2 and NO2-.
Learn more about Acid-Base Reactions here:https://brainly.com/question/15209937
#SPJ6
An electrochemical cell is constructed such that on one side a pure nickel electrode is in contact with a solution containing Ni2+ ions at a concentration of 3 × 10−3 M. The other cell half consists of a pure Fe electrode that is immersed in a solution of Fe2+ ions having a concentration of 0.1 M. At what temperature will the potential between the two electrodes be +0.140 V?
Answer: The temperature at which given potential between the two electrodes is attained is 331.13 K
Explanation:
The substance having highest positive [tex]E^o[/tex] potential will always get reduced and will undergo reduction reaction.
The half reaction follows:
Oxidation half reaction: [tex]Fe(s)\rightarrow Fe^{2+}(0.1M)+2e^-;E^o_{Fe^{2+}/Fe}=-0.44V[/tex]
Reduction half reaction: [tex]Ni^{2+}(3\times 10^{-3}M)+2e^-\rightarrow Ni(s);E^o_{Ni^{2+}/Ni}=-0.25V[/tex]
Net reaction: [tex]Fe(s)+Ni^{2+}(3\times 10^{-3}M)\rightarrow Fe^{2+}(0.1M)+Ni(s)[/tex]
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=-0.25-(-0.44)=0.19V[/tex]
To calculate the temperature at which the reaction is taking place, we use the Nernst equation, which is:
[tex]E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Fe^{2+}]}{[Ni^{2+}]}[/tex]
where,
[tex]E_{cell}[/tex] = electrode potential of the cell = +0.140 V
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +0.19 V
n = number of electrons exchanged = 2
R = Gas constant = 8.314 J/mol.K
F = Faraday's constant = 96500
T = temperature of the reaction
[tex][Fe^{2+}]=0.1M[/tex]
[tex][Ni^{2+}]=3\times 10^{-3}M[/tex]
Putting values in above equation, we get:
[tex]0.140=0.19-\frac{2.303\times 8.314\times T}{2\times 96500}\times \log(\frac{(0.1)}{(3\times 10^{-3})})\\\\T=331.13K[/tex]
Hence, the temperature at which given potential between the two electrodes is attained is 331.13 K
The temperature at which the potential between the two electrodes will be +0.140 V can be calculated using the Nernst equation. Rearranging the equation allows us to solve for temperature. Substituting the given values allows us to find the temperature.
Explanation:First, we need to find the cell potential using the Nernst equation:
Ecell = E°cell - (0.0592 V / n) * log(Q)
In this case, since both sides of the cell are based on the same half-reaction with different concentrations, the number of electrons transferred (n) is 2. The equilibrium constant (Q) can be calculated using the concentrations of Ni2+ and Fe2+ ions in the half-cells. Rearranging the equation, we can solve for temperature (T):
T = (Ecell - E°cell) / ((0.0592 V / n) * log(Q))
Substituting the given values, we can solve for T.
Learn more about temperature calculation here:https://brainly.com/question/36032928
#SPJ3
A certain substance, X, has a triple-point temperature of 20°C at a pressure of 2.0 atm. Which one of the statements cannot possibly be true?
A. X can exist as a liquid above 20°C.
B. X can exist as a solid above 20°C.
C. Liquid X can exist as a stable phase at 25°C, 1 atm.
D. Both liquid and solid X have the same vapor pressure at 20°C.
E. All of the above are true.
Answer:
Option B is incorrect.
Explanation:
Observe the graph that has been attached along with the answer, that is the general representation of a substance approaching and during triple point phase.
Now, checking the options one by one
A. We verify that a substance can be in liquid form above its triple point, which in this case is 20°C. So this is a true statement.
B.This is a false statement because all the solid state is exhibited before the triple point temperature ie. 20°C. So, false.
C. By stable phase, we mean that a substance exhibits only one state. On increasing the temperature and lowering the pressure, we see the only state possible is the vapor phase. So this statement has to be true.
D. This is a true statement and it is a fact.
E. All the statements are not true so this is not the correct option.
Therefore, only option B is an incorrect option.
The statement that 'X can exist as a solid above 20°C' cannot be true. Given that the substance has a triple-point temperature of 20°C, it implies that the substance cannot exist as a solid above this temperature if it is a typical substance that expands upon heating.
Explanation:The triple point of a substance is a specific temperature and pressure at which the three phases (solid, liquid, and gas) of the substance coexist in thermodynamic equilibrium. Given that substance X has a triple-point temperature of 20°C, it means that at this temperature and at a pressure of 2.0 atm, solid, liquid, and gaseous X can exist simultaneously.
From the choices given, statement B: 'X can exist as a solid above 20°C.' This cannot be true. If we are above the triple-point temperature and X is a typical substance that expands upon heating, it will not exist as a solid at temperatures above its triple point.
The other statements can be true depending on the actual phase diagram of X. The phase a substance is in, is determined both by its temperature and pressure. Therefore, without more information on substance X, it is difficult to conclusively verify or disprove those statements.
Learn more about Triple Point here:https://brainly.com/question/34445501
#SPJ6
Which one of the following solutes is most likely to have low water solubility due to the dissolution process being highly endothermic?
Al2O3
RbF
CaF2
AgCl
FeCl2
Al2O3, or aluminum oxide, is most likely to have low water solubility due to the dissolution process being highly endothermic. It requires more energy to break its intermolecular forces and disperse into water which results in a low solubility.
Explanation:The solute most likely to have low water solubility due to the dissolution process being highly endothermic is Al2O3 (aluminum oxide). In chemical reactions, an endothermic process involves the absorption of heat. Solutes like Al2O3 need more energy to overcome intermolecular forces and disperse into the solvent, thus making the dissolution process highly endothermic and resulting in lower solubility in water.
On the other hand, solutes like RbF, CaF2, AgCl, and FeCl2 generally require less energy to dissolve in water, making their dissolution process less endothermic and more favorable under normal environmental conditions.
Learn more about Solubility here:
https://brainly.com/question/28170449
#SPJ12
The equation below shows the thermite reaction, which has often been used for welding iron.
8 Al (s) + 3 Fe3O4 (s) ----------> 4 Al2O3 (s) + 9 Fe(s)
ΔH = -3350*KJ/mol rxn
1. It is highly exothermic; the reacting mixture can reach temperatures as high as 3000°C. 8 Al(s) + 3 Fe3O4(s) ® 4 Al2O3(s) + 9 Fe(s) DH° = –3350 kJ How much heat would be released by the reaction of 47.6 g of Al with 69.12 g of Fe3O4?
Answer:
335 Joules kJ of heat will be released
Explanation:
Given the balanced equation:
8 Al (s) + 3 Fe3O4 (s) ----------> 4 Al2O3 (s) + 9 Fe(s),
ΔH = -3350*KJ/mol rxn
This is the heat released when 8 moles of Al react with 3 mol Fe3O4.
We then need to calculate the moles of reactants, verify if there is a limiting reagent and proceed to answer the question based on the soichiometry of the reaction.
Atomic weight Al = 26.98 g/mol Molecular Weight Fe3O4 = 231.53 g/mol
mol Al = 47.6 g/26.98 g/mol = 1.76 mol
mol Fe3O4 = 69.12 g/ 231.53 g/mol = 0.30 mol
Limiting reagent calculation:
8 mol Al / 3 mol Fe3O4 x 0.30 mol Fe3O4 = 0.80 mol Al are required and we have 1.76 mol, therefore Fe3O4 is the limiting reagent
Amount of Heat
-3350 kJ/ 3 mol Fe3O4 x 0.30 mol Fe3O4 = -335.00 kJ
Consider the following reaction at equilibrium. What effect will increasing the temperature have on the system?Fe3O4(s) + CO(g) ↔ 3 FeO(s) + CO2(g) ΔH°= +35.9 kJThe equilibrium constant will decrease.No effect will be observed.The reaction will shift to the right in the direction of products.The equilibrium constant will increase.The reaction will shift to the left in the direction of reactants
Answer:
The reaction will shift to the right in the direction of products.
Explanation:
According to Le Chatelier's Principle, the change in any state of the equilibrium say temperature, volume, pressure, or the concentration, the equilibrium will oppose these changes and will shift in such a way that the effect cause must be nullified.
For an endothermic reaction,
On increasing the temperature, reaction will go in forward direction (towards right), because according to Le Chatelier's principle as we increase the temperature, the equilibrium is will be disturbed , so to again establish the equilibrium, the reaction will go in forward direction as it is endothermic in nature (towards right).
Thus, the [tex]\Delta H^0[/tex] of the given reaction is positive and thus, on increasing temperature, reaction will go in forward direction.
Answer:- The reaction will shift to the right in the direction of products.
The reaction will move to the left in the direction of the reactants as the temperature rises, favouring the endothermic path. The reaction will move left in the direction of the reactants, thus that is the right response.
A chemical process that takes heat from its surroundings is said to be going in an endothermic direction. Because the reactants and products of an endothermic reaction have different energies, heat energy is needed to help the reaction proceed and create the products. An endothermic reaction is one that absorbs heat while it is occurring. This can be felt as a drop in temperature in the immediate environment or shown by thermodynamic calculations. An endothermic process has a positive enthalpy change (H), which means energy is being absorbed. The reaction will move to the left in the direction of the reactants as the temperature rises, favouring the endothermic path. The reaction will move left in the direction of the reactants, thus that is the right response.
To know more about endothermic reaction, here:
https://brainly.com/question/12782939
#SPJ6
What is the empirical formula for a compound whose molecular formula is P4O10
a. POb. P2O5c. P4O10d. P8O20e. PO2
Answer:
The empirical formula is P2O5 (option B)
Explanation:
An empirical formula does not necessarily represent the actual numbers of atoms present in a molecule of a compound; it represents only the ratio between those numbers.
The actual numbers of atoms of each element that occur in the smallest freely existing unit or molecule of the compound is expressed by the molecular formula of the compound.
The molecular formula of a compound may be the empirical formula, or it may be a multiple of the empirical formula.
If the molecular formula is P4O10, this means for each for P-atoms we have 10-O atoms this is a ratio 4:10 or 1: 2.5
To find the empirical formula we divide the molecular formula by 2 what will give us P2O5
For each 2 P atoms we have 5 O-atoms. This is a ratio 1: 2.5
This is the simpliest form for the compound P4O10.
The empirical formula is P2O5 (option B)
Rank the following in order of increasing surface tension at a given temperature, and explain your ranking: a. CH3CH2CH2OH b. HOCH2CH(OH)CH2OH c. HOCH2CH2OH.
Explanation:
Surface tension is defined as the attractive forces experienced by the surface molecules of a liquid by the molecules present beneath the surface layer of the liquid.
In a molecule, more is the number of hydroxyl groups present in it more will be the force of attraction faced by surface molecules towards the inner side of the liquid.
Hence, then the surface tension will increase.
Compoud (a) has only one -OH group, compound (b) has 3 -OH groups and compound (c) has 2 -OH groups.
Therefore, the given compounds are arranged on the basis of order of increasing surface tension at a given temperature are as follows.
[tex]CH_3CH_2CH_2OH[/tex] < [tex]HOCH_2CH_2OH[/tex] < [tex]HOCH_2CH(OH)CH_2OH[/tex]
The surface tension in the following molecules in the increasing order is given as, [tex]\rm CH_2CH_2CH_2OH < HOCH_2CH_2OH < HOCH_2CH(OH)CH_2OH[/tex].
What is surface tension?Surface tension can be given as the force applied by the molecules underneath the liquid surface to form the attraction and made the liquid occupy, the least surface area.
The compounds with a more number of attracting groups such as hydroxyl radicals tend to apply more attraction and have more surface tension.
The number of hydroxyl groups in the following compounds are:
[tex]\rm CH_3CH_2CH_2OH=1[/tex][tex]\rm OHCH_2CH(OH)CH_2OH=3[/tex][tex]\rm OHCH_2CH_2OH=2[/tex]The increasing order of the surface tension in the following molecules is, [tex]\rm CH_2CH_2CH_2OH < HOCH_2CH_2OH < HOCH_2CH(OH)CH_2OH[/tex].
Learn more about surface tension, here:
https://brainly.com/question/571207
Write Lewis dot structures for the following molecules: NH3 SO2 CH3OH HNO2 N2 CH2O
Answer:
Check it below
Explanation:
1) The dots in Lewis Notation represent the Electronic Valence, in other words, the amount of Valence Electrons. The Lewis structures has the advantage of pictorially displaying the valence electrons around the symbol of the Atom.
2) We can easily find in a Periodic Table the number of bonds. Notice that we must rearrange the dots to observe the rule of the Octets. Each atom tends to have more stability and behave as noble gas, with eight electrons in its outer shell. So, in some examples, we'll have to rearrange the dots in order to have follow the Octet rule.
Check below each Lewis Structure
2.1[tex]NH_{3}[/tex] Ammonia
[tex]Valence:\\ N=5,H=1[/tex] Given by each group number.
2.2[tex]SO_{2}[/tex] Sulfur Dioxide
[tex]Valence:\\ S=6,O=2[/tex]
2.3) [tex]CH_{3}OH[/tex] Methanol
[tex]Valence:\\ C=4,O=2,H=1[/tex]
2.4) [tex]HNO_{2}[/tex]
2.5) [tex]N_{2}[/tex] Nitrogen Gas
2.6) [tex]CH_{2}O[/tex] Formaldehyde
To draw the Lewis dot structures for the given molecules, we need to determine the total number of valence electrons for each molecule and then arrange the atoms and electrons to satisfy the octet rule. The Lewis dot structures for NH3, SO2, CH3OH, HNO2, N2, and CH2O are shown with the appropriate arrangements of atoms and their valence electrons.
Explanation:To draw the Lewis dot structures for the given molecules, we first need to determine the total number of valence electrons for each molecule. For NH3, N has 5 valence electrons and each H has 1 valence electron, giving a total of 5 + 3 = 8 valence electrons. The Lewis dot structure for NH3 shows N as the central atom surrounded by three H atoms, each bonded by a single bond. Each H atom has two dots around it to represent its two valence electrons.
For SO2, S has 6 valence electrons and each O has 6 valence electrons, giving a total of 6 + 2(6) = 18 valence electrons. The Lewis dot structure for SO2 shows S as the central atom bonded to two O atoms by double bonds. Each O atom has six dots around it to represent its six valence electrons.
Continuing with CH3OH, C has 4 valence electrons, H has 1 valence electron, and O has 6 valence electrons, giving a total of 4 + 3(1) + 6 + 1 = 14 valence electrons. The Lewis dot structure for CH3OH shows C as the central atom bonded to three H atoms and one O atom. The O atom is bonded to the C atom by a single bond and has two dots around it to represent its two valence electrons.
For HNO2, H has 1 valence electron, N has 5 valence electrons, and each O has 6 valence electrons, giving a total of 1 + 5 + 2(6) = 18 valence electrons. The Lewis dot structure for HNO2 shows N as the central atom bonded to two O atoms by single bonds. Each O atom has six dots around it to represent its six valence electrons, and the H atom is bonded to one of the O atoms.
For N2, each N atom has 5 valence electrons, giving a total of 2(5) = 10 valence electrons. The Lewis dot structure for N2 shows two N atoms bonded by a triple bond, with each N atom having three dots around it to represent its three valence electrons.
Finally, for CH2O, C has 4 valence electrons, H has 1 valence electron, and O has 6 valence electrons, giving a total of 4 + 2(1) + 6 = 12 valence electrons. The Lewis dot structure for CH2O shows C as the central atom bonded to two H atoms and one O atom. The O atom is bonded to the C atom by a double bond and has four dots around it to represent its four valence electrons.
For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 175-cm-long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of 35 . If the rate of heat loss from this man to the environment at is 336 W, determine the rate of entropy transfer from the body of this person accompanying heat transfer, in W/K.
Answer:
Sgen = 0.0366 W/K
Explanation:
for the body:
∴ Q = - 336 W...rate of heat loss
∴ T surface = 35°C ≅ 308 K
the rate of entropy transfer from the body:
⇒ ΔS = - Q/Ts
for the enviroment:
⇒ ΔS = Q/Te
∴ assuming: T = Tenv = 25°C ≅ 298 K
resulting in a net variation in the universe:
⇒ Sgen = ΔS = Q/Tenviroment - Q/Tsurface = Q(Ts - Te)/Ts*Te
⇒ Sgen = (336( 308-298))/(308×298) = 3360 WK/91784 K² = 0.0366 W/K
A student placed 11.0 g of glucose (C6H12O6 ) in a volumetric flask, added enough water to dissolve the glucose by swirling, then carefully added additional water until the 100. mL mark on the neck of the flask was reached.
The flask was then shaken until the solution was uniform. A 55.0 mL sample of this glucose solution was diluted to 0.500 L .
How many grams of glucose are in 100. mL of the final solution?
To calculate the mass of glucose in 100 mL of the final solution, we can use the equation C1V1 = C2V2.
Explanation:To determine the number of grams of glucose in 100 mL of the final solution, we need to use the concept of dilution. The initial solution was prepared by dissolving 11.0 g of glucose in enough water to reach the 100 mL mark. Then, a 55.0 mL sample of this solution was diluted to 0.500 L. We can use the equation:
C1V1 = C2V2
Where C1 and V1 represent the concentration and volume of the initial solution, and C2 and V2 represent the concentration and volume of the final solution.
From this, we can calculate the concentration of the initial solution, and then use it to find the mass of glucose in 100 mL of the final solution.
Learn more about Dilution here:
https://brainly.com/question/28548168
#SPJ3
Endings (suffixes) in the naming process can tell us a lot about a chemical. For example, a compound named "Ethyl propanoate" would be categorized as a(n):
Answer:
Oxyanion
Explanation:
Nomenclature is a set of rules designed to name chemical compounds, in this rules the use of suffix is common to determine the functional group of a molecule, in the case of "Ethyl propanoate" the -ate suffix is used to design an oxyanion like sulfate SO42- or nitrate NO3-.
I hope you find this information useful and interesting! Good luck!
2) Compound A is neutral and Compound B is acidic. Both are water-insoluble solids. A and B are dissolved in dichloromethane (DCM) and extracted with aqueous base. The layers are then separated. What must be done to obtain the compound in the aqueous layer?
(A) Acidify and evaporate
(B) Acidify and vacuum filter
(C) Add Sodium Sulfate and Evaporate
(D) Add Sodium Sulfate and vacuum filter
Answer:
answer is a
Explanation:
Acidify and evaporate
The equilibrium constant is given for one of the reactions below. Determine the value of the missing equilibrium constant.2 SO2(g) + O2(g) ↔ 2 SO3(g) Kc = 1.7 × 106SO3(g) ↔ 1/2 O2(g) + SO2(g) Kc = ?1.3 × 10^31.2 × 10^-68.57.7 × 10^-43.4 × 10^2
Answer:
The value of equilibrium constant for reverse reaction is [tex]7.7\times 10^{-4}[/tex]
Explanation:
The given chemical equation follows:
[tex]2SO_2(g)+O_2(g)\rightleftharpoons 2SO_3(g)[/tex]
The equilibrium constant for the above equation is [tex]1.7\times 10^6[/tex].
We need to calculate the equilibrium constant for the reverse equation of above chemical equation, which is:
[tex]2SO_3(g)\rightarrow 2SO_2(g)+O_2(g)[/tex]
The equilibrium constant for the reverse reaction will be the reciprocal of the initial reaction.
If the equation is multiplied by a factor of '1/2', the equilibrium constant of the reverse reaction will be the square root of the equilibrium constant of initial reaction.
So,
[tex]SO_3(g)\rightarrow SO_2(g)+\frac{1}{2} O_2(g)[/tex]
The value of equilibrium constant for half reverse reaction is:
[tex]K_{eq}'=(\frac{1}{1.7\times 10^6})^{\frac{1}{2}}=0.00077=7.7\times 10^{-4}[/tex]
Hence, the value of equilibrium constant for reverse reaction is [tex]7.7\times 10^{-4}[/tex]
Answer:
[tex]7.7\times10^{-4}[/tex]
Explanation:
The equation for which we have to find Kc is obtained by two - step transformation of the equation whose Kc is given.
1st step:
Reversing the reaction:
By reversing the reaction the reactants become products and vice-versa.
The new equilibrium constant will be:
[tex]Kc^{'}=\frac{1}{Kc}[/tex]
2nd step:
Dividing the equation throughout by 2:
New Kc becomes:
[tex]Kc^{''}=\sqrt{Kc^{'}}=\frac{1}{\sqrt{Kc} }[/tex]
[tex]=\frac{1}{\sqrt{1.7\times10^{6} } }=7.7\times10^{-4}[/tex]
Hence the equilibrium constant is [tex]7.7\times10^{-4}[/tex]
Nitroglycerin is a dangerous powerful explosive that violently decomposes when it is shaken or dropped. The Swedish chemist Alfred Nobel (1833-1896) founded the Nobel Prizes with a fortune he made by inventing dynamite, a mixture of nitroglycerin and inert ingredients that was safe to handle. 1. Write a balanced chemical equation, including physical state symbols, for the decomposition of liquid nitroglycerin () into gaseous dinitrogen, gaseous dioxygen, gaseous water and gaseous carbon dioxide. 2. Suppose of carbon dioxide gas are produced by this reaction, at a temperature of and pressure of exactly . Calculate the mass of nitroglycerin that must have reacted. Be sure your answer has the correct number of significant digits.
Answer:
4 C3H5N3O9 ------> 6N2 + O2 + 10H2O + 12CO2
Explanation:
Nitroglycerin has a chemical formula C3H5N3O9. The balanced chemical equation is as follows:
4 C3H5N3O9 ------> 6N2 + O2 + 10H2O + 12CO2
We suppose that in a reaction, 44g of carbon dioxide is produced. The mass of nitroglycerin that must have reacted will be calculated as under:
Molecular mass of Nitroglycerin = 227g/mol
Molecular mass of Carbon dioxide = 44g/mol
No. of moles of carbon dioxide produced = 44/44 = 1 mole produced.
Now, from balanced chemical equation, we can see that
12 moles of carbon dioxide are produced by = 4 moles of nitroglycerin.
1 mole of carbon dioxide is produced by = 4/12 = 1/3 moles of nitroglycerin.
Mass of nitroglycerin which produced 1 mole of carbon dioxide = 1/3 x 227 = 75.666 grams.
Calculate the number of moles in the 2.00-L volume of air in the lungs of the average person. Note that the air is at 37.0°C (body temperature) and that the total volume in the lungs is several times the amount inhaled in a typical breath as given in
Answer:
The number of mole = 0.079 mole.
Explanation:
According to ideal gas equation,
PV = nRT.................... equation 1
Where P = pressure of the air, V = volume of the air, n = number of moles, R = molar gas constant, T = Temperature in (Kelvin), R = molar gas constant
Making n the subject of equation 1
n = PV/RT................... equation 2.
Where P = 101325 pa = 1 atm
V = 2.00 L = 2.00 dm³
T = 37 = 37 + 273 = 310 K, R= 0.082 atm/(dm³Kmol)
Applying these values in equation 1,
n = (2×1)/(310×0.082)
n = 2/25.42
n = 0.079 mole
Therefore the number of mole = 0.079 mole.
Final answer:
To find the number of moles in a 2.00-L volume of air at body temperature (37.0°C), you use the ideal gas law (PV = nRT) along with the conversion of the temperature to Kelvin. The calculation shows that there are approximately 0.0785 moles of air in this volume at the given temperature.
Explanation:
To calculate the number of moles of air in a 2.00-L volume at 37.0°C (body temperature), we can use the ideal gas law, which is PV = nRT.
In this formula, P represents pressure, V represents volume, n represents the number of moles, R is the gas constant (0.0821 L·atm/mol·K), and T is temperature in Kelvin. First, we need to convert the temperature from Celsius to Kelvin:
T(K) = T(°C) + 273.15
T(K) = 37.0 + 273.15 = 310.15 K
We assume that the pressure (P) is 1.00 atm, as this is a common assumption for problems at body temperature. The volume (V) is given as 2.00 L. Substituting the values into the ideal gas law equation, we get:
n = PV / RT
n = (1.00 atm) × (2.00 L) / (0.0821 L·atm/mol·K × 310.15 K)
Now, we can find the number of moles:
n = 2.00 / (0.0821 × 310.15)
n ≈ 0.0785 moles
Therefore, there are approximately 0.0785 moles of air in a 2.00-L volume at body temperature.
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.90×10−2 mol of N2O5(g) in a volume of 1.7 L.
Part A How many moles of N2O5 will remain after 4.0 min ?
Answer:
0.00564 moles
Explanation:
Given that:
The rate constant, k = [tex]6.82\times 10^{-3}[/tex] s⁻¹
Initial concentration [A₀] = [tex]2.90\times 10^{-2}[/tex] mol
Time = 4.0 min = [tex]4.0\times 60[/tex] sec = 240 sec
Using integrated rate law for first order kinetics as:
[tex][A_t]=[A_0]e^{-kt}[/tex]
Where,
[tex][A_t][/tex] is the concentration at time t
So,
[tex][A_t]=2.90\times 10^{-2}\times e^{-6.82\times 10^{-3}\times 240}=2.9\times \frac{1}{10^2}\times \frac{1}{e^{1.6368}}[/tex]
[tex][A_t]=0.00564\ moles[/tex]
The concentration after four minutes is 3.3 ×10−3.
Let us recall that for a first order reaction;
ln[A] = ln[A]o - kt
Where;
[A] = concentration at time t
[A]o = initial concentration
k = rate constant
t = time
[A]o = 2.90×10−2 mol/1.7 L = 0.0171 M
k = 6.82×10−3 s−1
t = 4 min or 240 s
Substituting values;
ln[A] = ln[0.0171 M] - (6.82×10−3 s−1 × 240 s)
[A] = e^ln[0.0171 M] - (6.82×10−3 s−1 × 240 s)
[A] = 3.3 ×10−3.
Learn more about rate of reaction: https://brainly.com/question/17960050
A galvanic (voltaic) cell consists of an electrode composed of titanium in a 1.0 M titanium(II) ion solution and a second electrode composed of tin in a 1.0 M tin(II) ion solution, connected by a salt bridge. Calculate the standard potential for this cell at 25C.
Answer: The standard potential for this cell is +1.49 V at 25C.
Explanation:
[tex]E^0_{[Sn^{2+}/Sn]}=-0.14V[/tex]
[tex]E^0_{[Ti^{2+}/Ti]}=-1.63V[/tex]
As titanium has lower reduction potential, it will act as anode and tin will acts as cathode.
[tex]Ti+Sn^{2+}\rightarrow Ti^{2+}+Sn[/tex]
Using Nernst equation :
[tex]E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Ti^{2+}]}{[Sn^{2+}]}[/tex]
where,
F = Faraday constant = 96500 C
R = gas constant = 8.314 J/mol.K
T = room temperature = [tex]25^oC=273+25=298K[/tex]
n = number of electrons in oxidation-reduction reaction = 2
[tex]E^0=E^0_{cathode}- E^0_{anode}=-0.14-(-1.63)=1.49V[/tex]
Where both [tex]E^0[/tex] are standard reduction potentials.
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = 1.49 V
[tex]E_{cell}[/tex] = emf of the cell = ?
Now put all the given values in the above equation, we get:
[tex]E_{cell}=1.49-\frac{2.303\times (8.314)\times (298)}{1\times 96500}\log \frac{1}{1}[/tex]
[tex]E_{cell}=1.49V[/tex]
The voltage of the voltaic cell is 1.49 V.
What is a voltaic cell?A voltaic cell is a cell in which electrical energy is produced by a spontaneous chemical reaction.
The equation of the cell is; Ti(s) + Si^2+(aq) -----> Ti^2+(aq) + Si(s)
E°cathode = -0.14 V
E°anode = -1.63 V
E°cell = (-0.14 V) - (-1.63 V) = 1.49 V
Using the Nernst equation;
E = E°cell - 0.0592/n log[Ti^2+]/[Si^2+]
E = 1.49 V - 0.0592/2 log(1)/(1)
E = 1.49 V
Learn more about voltaic cell: https://brainly.com/question/9743981
A hot air balloon is filled to a volume of 44.5 L at 758 torr.
What will be the volume of the balloon if the pressure decreases to 748 torr under constant temperature?
A. 45.1 L
B. 43.9 L
C. 44.5 L
D. 49.0 L
Answer:
The volume of the balloon, if the pressure decreases to 748 torr, will be 45.1 L
Explanation:
Step 1: Data given
Volume of the balloon = 44.5 L
Pressure in the balloon = 758 torr
Final pressure = 748 torr
Step 2: Calculate final volume
P1*V1 = P2*V2
⇒ with P1 = the initial pressure = 758 torr
⇒ with V1 = the initial volume = 44.5 L
⇒ with P2 = the final pressure = 748 torr
⇒ with V2 = the final volume = TO BE DETERMINED
V2 = (P1*V1)/P2
V2 = (758 * 44.5) /748
V2 = 45.1 L
The volume of the balloon, if the pressure decreases to 748 torr, will be 45.1 L
Using Boyle's Law, we can determine the new volume of the balloon when the pressure decreases from 758 torr to 748 torr while keeping the temperature constant. After performing the calculation (P1 * V1) / P2, we find that the new volume is approximately 45.1 L. So the correcct option is A.
Explanation:To solve this problem, we can use Boyle's Law, which states that the pressure (P) of a gas is inversely proportional to its volume (V) at constant temperature and number of moles. Mathematically, it can be expressed as P1 * V1 = P2 * V2, where P1 and V1 are the initial pressure and volume, and P2 and V2 are the final pressure and volume, respectively.
The initial conditions are a pressure (P1) of 758 torr and a volume (V1) of 44.5 L. We are looking for the final volume (V2) when the pressure (P2) decreases to 748 torr. By rearranging Boyle's Law, we can solve for V2: V2 = (P1 * V1) / P2.
Plugging in the known values, we have V2 = (758 torr * 44.5 L) / 748 torr. This calculation gives us V2 ≈ 45.1 L, which corresponds to option A).
Learn more about Boyle's Law here:https://brainly.com/question/21184611
#SPJ3
Draw a highly magnified view of a sealed, rigid container filled with a gas. Then draw what it would look like if you cooled the gas significantly but kept the temperature above the boiling point of the substance in the container. Also draw what it would look like if you heated the gas significantly. Finally, draw what each situation would look like if you evacuated enough of the gas to decrease the pressure by a factor of 2.
Answer:
In order to fully understand the issue of the ideal gas or perfect gas, we must pay attention to the following, an ideal or perfect gas does not really exist, it is a hypothetical gas whose sharing of the variables of pressure, volume and temperature can be fully described by the ideal gas equation.
The molecules that make up an ideal gas do not usually attract or repel each other, and their volume is negligible compared to the volume of the container that contains it. Although in our nature the case of an ideal gas does not exist, the differences between the behavior of a real gas in temperature and pressure margins do not substantially alter the calculations, so we can make use of the equation with all the security, to solve various gas exercises.
Explanation:
The collisions that occur between the molecules and with the molecules and with the walls is elastic because the moment is preserved, in addition to the kinetic energy.
It can be synthesized that a gas is ideal when all collisions that occur between atoms or molecules are completely elastic and there are no attractive forces that are intermolecular.
In ideal gases the kinetic energy is proportional to its temperature. The gases approach an ideal gas if they are mono atomic gases, if it is under pressure and also at room temperature.
The amount of gas in a body is measured in moles. One mole of any type of gas reaches 22.4 liters, in normal condition, 0 ° Celsius and 1 of the pressure atmosphere. That volume is called normal molar volume.
Ideal gases have an equation called the Ideal Gas Equation and is based on three main laws that are Boyle's law, Gay-Lussac's law, Charles's law and also Avogadro's law.
A certain metal alloy is composed of 10% tin, 16% antimony, and 74% lead. If you were to have 500 g of the alloy, how many grams of antimony would be found in this sample?
a. 370g
b.50g
c.80g
d. 16g
Answer:
c. 80 g
Explanation:
metal alloy:
wt% = (mass compound/mass alloy)×100for antimony:
⇒ 16% = (g antimony / g alloy)×100
⇒ 0.16 = g antimony / g alloy
∴ g alloy = 500 g
⇒ (0.16)×(500 g) = g antimony
⇒ g antimony = 80 g
The nuclide As-76 has a half-life of 26.0 hours. If a sample of As-76 weighs 344 g, what mass of As-76 remains after 538 minutes?271 g67.8 g144 g437 g251 g
Answer:
271g
Explanation:
The full explanation is seen in the image attached. See the solution below for details