A regular pyramid has a height of 12 centimeters and a square base. if the volume of the pyramid is 256 cubic centimeters, how many centimeters are in the length of one side of its base

Answers

Answer 1
Let the length of one side of the base square be a cm.

The Volume of a pyramid is [tex] \frac{1}{3}*area_b_a_s_e *height[/tex]

the area of the base is a^2, 

we apply the formula

[tex]256= \frac{1}{3}*a^{2}*12 [/tex]

[tex]256= 4a^{2} [/tex]

[tex]256= (2a)^{2} [/tex]

[tex]2a= \sqrt{256}=16[/tex] 

a=8 (cm)

Answer: 8 cm

Related Questions

Use the three steps to solve the problem. the length of a rectangle is 2 inches less than 3 times the number of inches in its width. if the perimeter of the rectangle is 28 inches, what is the width and length of the rectangle?

Answers

Let the width of the rectangle be w.

Let the length be l.

l = 3w - 2

Given,

Perimeter = 28 

2*( l + w ) = 28

2*( 3w -2 + w ) = 28 

4w - 2 = 14  [ Dividing both sides by 2 ]

2w - 1 = 7 [ Dividing both sides by 2 ]

2w = 8

w = 4.

Thus,

l = 3w -2 = 3*4 - 2 = 12 - 2 = 10

Therefore, the length is 10 inches and the width is 4 inches.

Three cards are drawn with replacement from a standard deck. what is the probability that the first card will be a diamond, the second card will be a black card, and the third card will be an ace? express your answer as a fraction or a decimal number rounded to four decimal places.

Answers

there are 13 diamonds per deck

26 black cards

4 aces

 so a 13/52 chance for a diamond

 a 26/52, reduced to 1/2 chance for a black card

 and a 4/52 chance for an ace

13/52 x 1/2 x 4/52 = 52/5408 = 1/104 probability

On the day their child was born, her parents deposited $25,000 in a savings account that earns 11% interest annually. How much is in the account the day the child turns 16 years old (rounded to the nearest cent)? Hint: an = a1(1 + r)n, r ≠ 1, where a1 is the initial amount deposited and r is the common ratio or interest rate.

Answer choices:
$119,614.74 $132,772.36 $128,612.52 $440,000.00

Answers

Total = Principal * (1 + rate)^years
Total = 25,000 * (1.11)^16
Total = 25,000 * 5.3108943321
Total = 132,772.36
(This is the second answer)



Final answer:

After using the compound interest formula with an initial deposit of $25,000, an annual interest rate of 11%, and a time period of 16 years, the balance rounds to $120,034.10, which does not match any of the provided answer choices.

Explanation:

To find out how much is in the account when the child turns 16 years old, we can use the formula for compound interest: an = a1(1 + r)n, where a1 is the original amount deposited, r is the annual interest rate (expressed as a decimal), and n is the number of years the money is invested. In this case, a1 is $25,000, r is 0.11 (11%), and n is 16.

Using the formula, we calculate the account balance as follows:

Account Balance = 25,000(1 + 0.11)16

Account Balance = 25,000(1.11)16

Account Balance = 25,000(4.801364)

Account Balance = $119,999.10

However, this result is not in the given answer choices, so let's ensure we are rounding to the nearest cent:

Account Balance = $120,034.09 (before rounding)

Account Balance = $120,034.10 (after rounding to the nearest cent)

None of the answer choices matches this amount, so it is possible there has been a mistake in the provided choices or in our calculations. We should double-check the interest rate, time period, and the formula used.

Which equation results from isolating a radical term and squaring both sides of the equation for the equation sqrt(c-2) - sqrt(c) = 5

A) c-2=25+c

B) c-2=25-c

C) c-2 = 25+c-10sqrt(c)

D) c-2 = 25-c+10sqrt(c)

Answers

Answer:

D) c - 2 = 25 + c + 10√c

Step-by-step explanation:

The given equation is sqrt(c-2) - sqrt(c) = 5

Taking square on both sides, we get

Here we used ( a+ b)^2 = a^2 + b^2 + 2ab formula.

c - 2 = 5^2 + (√c)^2 + 2(5)√c

c - 2 = 25 + c +10√c

Hope this helps!! Have a great day!! ❤

The correct equation resulting from isolating a radical term and squaring both sides of the original equation is D) [tex]\( c-2 = 25-c+10\sqrt{c} \)[/tex].

To arrive at this result, let's start with the original equation and isolate one of the radical terms:

[tex]\[ \sqrt{c-2} - \sqrt{c} = 5 \][/tex]

Now, isolate the radical on one side:

[tex]\[ \sqrt{c-2} = 5 + \sqrt{c} \][/tex]

Next, square both sides to eliminate the radical:

[tex]\[ (\sqrt{c-2})^2 = (5 + \sqrt{c})^2 \] \[ c-2 = 25 + 2 \cdot 5 \cdot \sqrt{c} + (\sqrt{c})^2 \] \[ c-2 = 25 + 10\sqrt{c} + c \][/tex]

Now, we want to isolate the term with the radical on one side and the rest on the other side:

[tex]\[ c-2 = 25 + 10\sqrt{c} + c \][/tex]

Subtract c from both sides to get:

[tex]\[ c-2-c = 25 + 10\sqrt{c} \] \[ -2 = 25 + 10\sqrt{c} \][/tex]

Finally, add 2 to both sides to isolate the radical term:

[tex]\[ -2 + 2 = 25 + 10\sqrt{c} + 2 \] \[ 0 = 25 + 10\sqrt{c} - 2 \] \[ c-2 = 25 - c + 10\sqrt{c} \][/tex]

This matches option D, confirming that the correct equation is:

[tex]\[ c-2 = 25-c+10\sqrt{c} \][/tex]

A rectangular table top has a perimeter of 24 inches and an area of 35 square inches. find its dimensions.

Answers

hello : 
let : x  the lenght    y : the widith
the perimeter is ; 2(x+y)  and the area is : xy
so the system : 2(x+y) =24
                            xy  = 35  
  x+y = 12.....(1)
 xy = 35  ...(2)
 by (1) : y = 12-x
subsct in (2) : (12-x)x = 35
x²-12x+35 = 0
(x-7)(x-5) = 0
x-7=0 or x-5 = 0
x=7 or x=5
if : x=7    y = 12-7 = 5
if : x=5    y = 12-5 =7
but : x > y
conclusion : one solution  (7 , 5).

The dimensions are 7 and 5 inches.

The value of dimensions of rectangle are 5 and 7.

What is mean by Rectangle?

A rectangle is a two dimension figure with 4 sides, 4 corners and 4 right angles. The opposite sides of the rectangle are equal and parallel to each other.

Given that;

A rectangular table top has a perimeter of 24 inches and an area of 35 square inches.

Let the dimensions of rectangle are;

Length = L

Width = W

So, We can formulate;

⇒ 2 ( L + W ) = 24

⇒ L + W = 12   ..(i)

And,

⇒ L × W = 35

⇒ L = 35 / W  ... (ii)

Substitute the value from (ii) in (i), we get;

⇒ L + W = 12

⇒ 35/W + W = 12

⇒ 35 + W² = 12W

⇒ W² - 12W + 35 = 0

⇒ W² - (7W + 5W) + 35 = 0

⇒ W² - 7W - 5W + 35 = 0

⇒ W (W - 7) - 5 (W - 7) = 0

⇒ (W - 5) (W - 7) = 0

⇒ W = 5

And, W = 7

And, We get;

⇒ L = 35 / W

Put W = 5;

⇒ L = 35 / 5

⇒ L = 7

And,

⇒ L = 35 / W

Put W = 7;

⇒ L = 35 / 7

⇒ L = 5

Thus, The possible values of dimensions are;

⇒ 5 and 7.

Learn more about the rectangle visit:

brainly.com/question/2607596

#SPJ5

What is the factorization of the polynomial graphed below? Assume it has no constant factor.

A. x(x+2)
B. (x-2)(x-2)
C. x(x-2)
D. (x+2)(x+2)

Answers

It is B because the only point intercepting the x axis is 2. For it to be A or C, the graph would have to intercept point (0,0)

Answer:

Option: B is correct.

The factorization of the polynomial graphed below is:

f(x)=(x-2)(x-2)

Step-by-step solution:

Clearly from the graph we could see that the graph of the function touches x=2.

that means that x=2 is a root of the function

Also when the graph touches the point of x-axis and does not pass that point than that zero is the repeated zero of the function.

That means that x=2 is a repeated zero of the function f(x).

Hence,

The factorization of the polynomial graphed below is:

f(x)=(x-2)(x-2)

Hence, option B is correct.

( Also in first option:

A) x(x+2)

x=0 must also be an zero but in the graph we could see that x=0 is not a solution.

Hence option A is false.

C)

x(x-2)

again as in option: A x=0 must be a solution.

Hence, option C is false.

D)

(x+2)(x+2)

x=-2 must be a solution but the graph does not touches x=-2.

Hence, option D is incorrect )

Suppose a laboratory has a 30 g sample of polonium-210. The half-life of polonium-210 is about 138 days. How many half-lives of polonium-210 occur in 1104 days? How much polonium is in the sample 1104 days later?

Answers

That is exactly 8 half lives.
After 8 half - lives only (1 / 2^8) or (1 / 256) of the original 30 grams will remain.
(1 / 256) = 0.003906250
So, 30 * 0.003906250 = 0.1171875 grams will remain.
 




Answer:

8 half-lives of polonium-210 occur in 1104 days.

0.1174 g of polonium-210 will remain in the sample after 1104 days.

Step-by-step explanation:

Initial mass of the polonium-210 = 30 g

Half life of the sample, = [tex]t_{\frac{1}{2}}=138 days[/tex]

Formula used :

[tex]N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]

where,

[tex]N_o[/tex] = initial mass of isotope

N = mass of the parent isotope left after the time, (t)

[tex]t_{\frac{1}{2}}[/tex] = half life of the isotope

[tex]\lambda[/tex] = rate constant

[tex]\lambda =\frac{0.693}{138 days}=0.005021 day^{-1}[/tex]

time ,t = 1104 dyas

[tex]N=N_o\times e^{-(\lambda )\times t}[/tex]

Now put all the given values in this formula, we get

[tex]N=30g\times e^{-0.005021 day^{-1}\times 1104 days}[/tex]

[tex]N=0.1174 g[/tex]

Number of half-lives:

[tex]N=\frac{N_o}{2^n}[/tex]

n =  Number of half lives elapsed

[tex]0.1174 g=\frac{30 g}{2^n}[/tex]

[tex]n = 7.99\approx 8[/tex]

8 half-lives of polonium-210 occur in 1104 days.

0.1174 g of polonium-210 will remain in the sample after 1104 days.

What is 784 in expanded form, using exponents?

Answers

700 + 80 + 2^2?

I have no idea rly lol
7 * 10^2 +8 * 10^1 + 4 * 10^0

Mentally estimate the total cost of items that have the following prices $1.85 $.98 $3.94 $9.78 and $6.18 round off the answer to the nearest half dollar

A. $22.50
B. $22.59
C. $23.00
D. $22.30

Answers

the first 4 would be rounded up tot he nearest dollar and the last one rounded down to the nearest dollar

 doing that I estimate $23.00

Answer is C


An object is thrown upward from the top of an 80ft tower.
The height h of the object after t seconds is represented by the quadratic equation h= -16t^2 + 64t + 80.

After how many seconds will the object hit the ground?

A. 29 seconds
B. 6.4 seconds
C. 5.0 seconds
D. 8.0 seconds

Answers

C because if you solve for the solutions for the quadratic, then you get 5 and -1 but you cant have negative seconds so 5 is the right answer!

Simplify this using the imaginary i

Answers

200=25*8, 25=5^2, therefore, the answer is 5iroot8( the second one)
[tex]\bf \sqrt{-200}\implies \sqrt{-1\cdot 200}\implies \sqrt{-1}\cdot \sqrt{200}\quad \begin{cases} \sqrt{-1}=i\\ 200=5\cdot 5\cdot 8\\ \qquad 5^2\cdot 8 \end{cases} \\\\\\ i\sqrt{5^2\cdot 8}\implies i\cdot 5\sqrt{8}\implies 5i\sqrt{8}\\\\ -------------------------------\\\\ \textit{by the way }8=2^2\cdot 2\qquad 5i\sqrt{2^2\cdot 2}\implies 5i\cdot 2\sqrt{2}\implies \boxed{10i\sqrt{2}}[/tex]

How will the perimeter of the rectangle change if each side is increased by a factor of 10? the long side has 6cm and the short side is 3cm.
a.The perimeter will be 1/10 the original.
b.The perimeter will be 1/100 the original
c.The perimeter will be 10 times the original.
d.The perimeter will be 100 times the original.

Answers

p1=2(3+6)

p1=18

p2=2(30+60)

p2=180

p2/p1=180/18=10

c. The perimeter will be 10 times the original.

Answer: Option 'C' is correct.

The perimeter will be 10 times the original .

Step-by-step explanation:

Since we have given that

Length of the rectangle = 6 cm

Breadth of the rectangle = 3 cm

As we know the formula for "Perimeter of rectangle "

[tex]\text{Perimeter of original rectangle }=2(Length+ Breadth)\\\\\text{Preimeter of rectangle }=2(6+3)\\\\\text{Perimeter of rectangle }=18\ cm[/tex]

According to question, each side is increased by a factor of 10

so, Perimeter of new rectangle is given by

[tex]10\times 2\times (6+3)\\\\=180\ cm[/tex]

Hence, Option 'C' is correct.

So, the perimeter will be 10 times the original .


A company employs 48 people in various departments. The average annual salary of each employee is $25,000 with a maximum variance of $3,000. What is the range of the total salary that the company pays to its employees annually?

Answers

Given:
n = 48, the sample size
m = $25,000, th sample mean
σ = $3000, the maximum variance

The standard deviation is
s = √σ = √(3000) = 54.772

As a rule of thumb, the range is 4 times the standard deviation. Therefore the range is
R = 4*54.772 = 219.09
Half the range is
R/2 = 219.09/2 = 109.45

The required  range is
(25000-109.45, 25000+109.45) = (24890.46, 25109.54)

Answer: ($24,890.46, $25,109.54)

Answer:

$1,056,000 ≤ x ≤ $1,344,000

Step-by-step explanation:

took test

GEOMETRY- I just need someone to check my answer!

Answers

the answer would be correct. hope that helped
You are correct good job

evaluate 9 + 11g - 4h when g = 2 and h = 7

Answers

Substitute the variables for the values given.

9 + 11(2) - 4(7) =
9 + 22 - 28 =
31 - 28 =
3

So, 3 is the answer.
9 + 11g - 4h
9 + 11(2) - 4(7)
9 + 22 - 28
31 - 28

The final answer is 3.

What are the real zeros of x^3 + 4x^2 − 9x − 36

Answers

x3 + 4x2 -9x -36 
[x3 + 4x2] -9 [ x+4] 
take x2 common factor from first praket
x2[x+4] -9 [x+4] 
= [x+4] *[x2 -9] 
so the zeros of this equation are -4 , 3, -3

Answer:

x = −3, 3, −4

Step-by-step explanation:

Solve by the linear combination method (with or without multiplication). x + y = 40 0.08x + 0.03y = 1.7

Answers

That's also known as the addition method.
   x + y = 40
.08x+.03y=1.7
We need to multiply the top equation by either a -.08 or a -.03 to eliminate one of the variables.  Let's get rid of the y:
-.03(x + y) = -.03(40) which gives us

-.03x - .03y = -1.2
 .08x + .03y = 1.7
When we add those together we are left with .05x = .5 and x = 10.  If we sub that 10 in for x into the first equation (either would have worked but the first one is way easier to work with!) we get 10 + y = 40 and y = 30.  So the solution to the system is (10, 30)

Answer:

-_- Answer is -3

Step-by-step explanation:

Doing the instruction vidio.

The lengths of the sides of a triangle are in the extended ratio 1 : 2 : 5. the perimeter of the triangle is 32 ft. the length of the longest side is:

Answers

The sides of the triangle are x, 2x and 5x

x + 2x + 5x = 32
8x = 32
x = 32/8
x = 4

longest side = 5x = 5*4 = 20 ft

The length of longest side of the triangle is 20 ft .

What is perimeter of the triangle?

The perimeter of a triangle is defined as the total length of its boundary.

The basic formula used to calculate the perimeter of a triangle is:

Perimeter = sum of the three sides

According to the question

The lengths of the sides of a triangle are in the extended ratio 1 : 2 : 5 .

Let  common constant factor within ratio = x

Therefore,

Sides of triangle = x , 2x , 5x

and the perimeter of the triangle = 32 ft  

i.e

according to the formula of perimeter of a triangle:

Perimeter = sum of the three sides  

Now,

Substituting the value in formula

[tex]32 = x + 2x + 5x[/tex]

[tex]32 = 8x[/tex]

[tex]x = 4[/tex]  

The sides of triangle is  : 4 ft  , 2*4 , 5*4

                                       : 4 ft   , 8 ft  , 20 ft    

Hence, the length of longest side of the triangle is 20 ft

To know more about perimeter of the triangle here:

https://brainly.com/question/23935199

#SPJ2

If two sides of a triangle are 12 and 17, and the included angle is 60, what is the area of the triangle

Answers

The area of a triangle is half the product of two sides times the sine of the included angle.

[tex]A= \frac{1}{2}*12*17*sin(60^o) =102* \frac{ \sqrt{3} }{2}=51 \sqrt{3} \approx 88.33 \ units^2[/tex]

Evaluate 4x - 7 when x = 6

Replace the variables/letters in the expression above with the values assigned to them, so replace all x’s with 6 in this example

implify the expression (following order of operations)

Answers

When [tex]\(x = 6\)[/tex], the expression [tex]\(4x - 7\)[/tex] simplifies to 17 following the order of operations.

To evaluate the expression [tex]\(4x - 7\)[/tex] when [tex]\(x = 6\)[/tex], substitute the value of [tex]\(x\)[/tex] into the expression and simplify using the order of operations.

[tex]\[4x - 7\][/tex]

Replace [tex]\(x\)[/tex] with 6:

[tex]\[4(6) - 7\][/tex]

Following the order of operations (PEMDAS), perform the multiplication first:

[tex]\[24 - 7\][/tex]

Now, perform the subtraction:

[tex]\[17\][/tex]

Thus, when \(x = 6\), the value of [tex]\(4x - 7\)[/tex] is 17.

In this expression, the variable [tex]\(x\)[/tex] is multiplied by 4, and then 7 is subtracted from the result. By substituting the value of [tex]\(x\)[/tex], which is 6 in this case, and simplifying according to the order of operations, we obtain the final result of 17.

How to solve this? Please help!

Answers

sinA=8/17, so arcsin(8/17) is your angle of A (around 49 degrees). 90-A is your angle for B

When the reciprocal of three times a number is subtracted from 7, the result is the reciprocal of twice the number. find the number?

Answers

Final answer:

To find the number, we set up the equation 7 - 1/(3x) = 1/(2x) and solve for x.

Explanation:

To find the number, we need to set up an equation based on the given information.

Let's assume the number is 'x'.

According to the problem, the reciprocal of three times the number is subtracted from 7 and is equal to the reciprocal of twice the number. We can write this as:

7 - 1/(3x) = 1/(2x)

To solve this equation, we can multiply both sides by the common denominator, which is 6x. This will eliminate the fractions.

6x * 7 - 6x * 1/(3x) = 6x * 1/(2x)

42x - 2 = 3

Subtracting 2 from both sides, we get:

42x = 1

Dividing both sides by 42, we find:

x = 1/42

Therefore, the number is 1/42.

A farmer owns pigs, chickens, and ducks. When all her animals are together, she has 30 feathered animals, and the animals all together have a total of 120 legs and 90 eyes. (All the animals have the expected number of parts.) How many of each animal might she have?

She has 18 pigs, 13 chickens, and 17 ducks.

She has 10 pigs, 15 chickens, and 15 ducks.

She has 15 pigs, 12 chickens, and 18 ducks.

She has 12 pigs, 15 chickens, and 15 ducks.

Answers

To solve this problem, let us first assign some variables. Let us say that:

x = pigs

y = chickens

z = ducks

 

From the problem statement, we can formulate the following equations:

1. y + z = 30                                         ---> only chicken and ducks have feathers

2. 4 x + 2 y + 2 z = 120                      ---> pig has 4 feet, while chicken and duck has 2 each

3. 2 x + 2 y + 2 z = 90                        ---> each animal has 2 eyes only

 

Rewriting equation 1 in terms of y:

y = 30 – z

Plugging this in equation 2:

4 x + 2 (30 – z) + 2 z = 120

4 x + 60 – 2z + 2z = 120

4 x = 120 – 60

4 x = 60

x = 15

 

From the given choices, only one choice has 15 pigs. Therefore the answers are:

She has 15 pigs, 12 chickens, and 18 ducks.

Describe the transformation of the graph of f into the graph of g as either a horizontal or vertical stretch. f(x)=sqrt(x) and g(x)=sqrt(0.5x)

Answers

[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\\\ % left side templates \begin{array}{llll} f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \end{array}\\\\ --------------------\\\\[/tex]

[tex]\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}[/tex]

[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}}[/tex]

with that template in mind, let's see    [tex]\bf f(x)=\sqrt{x}\qquad \begin{array}{llll} g(x)=&\sqrt{0.5x}\\ &\quad \uparrow \\ &\quad B \end{array}[/tex]

so B went form 1 on f(x), down to 0.5 or 1/2 on g(x)
B = 1/2, thus the graph is stretched by twice as much.
Answer:

The transformation of the function f(x) to g(x) is a horizontal stretch.

Step-by-step explanation:

The parent function f(x) is given by:

             [tex]f(x)=\sqrt{x}[/tex]

and the transformed function g(x) is given by:

              [tex]g(x)=\sqrt{0.5x}[/tex]

Now we know that the transformation of the type:

       f(x) → f(bx)

is a horizontal stretch if 0<b<1

and is a horizontal shrink if b>1

Here we have:

[tex]b=\dfrac{1}{2}=0.5[/tex]

i.e.

[tex]0<b<1[/tex]

This means that the transformation of the function f(x) to g(x) is a horizontal stretch by a factor of 2.

During a period of 11 years 737737 of the people selected for grand jury duty were​ sampled, and 6868​% of them were immigrants. use the sample data to construct a​ 99% confidence interval estimate of the proportion of grand jury members who were immigrants. given that among the people eligible for jury​ duty, 69.469.4​% of them were​ immigrants, does it appear that the jury selection process was somehow biased against​ immigrants?

Answers

The formula to set out the lower and the upper margin of a confidence interval when given the proportion (no standard deviation) is

Lower margin = p - Z* √[(pq) ÷ n]
Upper margin  = p + Z* √[(pq) ÷ n]

Where:
p is the sample proportion
q is 1 - p
Z* is the z-score for the confidence level
n is the number size
--------------------------------------------------------------------------------------------------------------

p = (68% of 737) ÷ 737 = 501.16 ÷ 737 = 0.68
q = 1 - p = 1 - 0.68 = 0.32
Z* = 2.58 (refer to the table attached below)
n = 737 

substituting these values into the formula, we have

lower margin = 0.68 - (2.58) √[(0.68×0.32) ÷ 737]
lower margin = 0.68 - (2.58) √(0.0002952510176...)
lower margin = 0.68 - 0.04433180431
lower margin = 0.6357 (rounded to four decimal places)
lower margin = 63.57%

upper margin = 0.68 + 0.04433180431
upper margin = 0.7243 (rounded to four decimal places)
upper margin = 72.43%

The confidence interval is between 63.57% and 72.43%. In other words, we can say that between 63.57% and 72.43% of jury members are immigrant. 

The claim of 69.46% is within the confidence interval, hence we can conclude that the selection of grand jury duty is not biased against the immigrant. 



The temperature dropped 2° F every hour for 6 hours. What was the total number of degrees the temperature changed in the 6 hours

Answers

-12 degrees.
-2 x 6, -2 stands for the drop, 6 stands for the hours.
-2 x 6 = -12, meaning the temperature dropped -12 degrees.

The endpoints of segment AC are A( – 7, – 3) and C( 8, 4). Point B is somewhere in between AC. Determine the coordinates of point B if the ratio of the distances between these points is AB : BC = 5 : 2.




Answers

The horizontal distance between AC is 15 units
The vertical distance between AC is 7 units

The point B is located such that AB: BC = 5:2, in other words, AB = 5/7 of the line and BC is 2/7 of the line

5/7 of the horizontal distance is (5/7) × 15 = 75/7
2/7 of the vertical distance is (2/7) × 15 = 30/7

The coordinate of B is (75/7, 30/7)

A construction crew wants to hoist a heavy beam so that it is standing up straight. ey tie a rope to the beam, secure the base, and pull the rope through a pulley to raise one end of the beam from the ground. When the beam makes an angle of 408 with the ground, the top of the beam is 8 ft above the ground. e construction site has some telephone wires crossing it. e workers are concerned that the beam may hit the wires. When the beam makes an angle of 608 with the ground, the wires are 2 ft above the top of the beam. Will the beam clear the wires on its way to standing up straight? Explain.

Answers

Final answer:

Using trigonometry, it can be determined that the beam will clear the wires when it stands up straight. The beam's length remains constant and by finding the height of the beam at different angles, we can confirm that it will not hit the wires.

Explanation:

The problem can be solved using trigonometry. Firstly, you need to find out the length of the beam when it makes an 40° angle with the ground. The length of the beam would be 8 ft / sin(40°) around 12.61 ft. Now, when the beam makes a 60° angle with the ground, the top of the beam will be sin(60°) * 12.61 ft = 10.92 ft off the ground. Because the wires are 2 ft above that (at 8 ft + 2 ft = 10 ft), the beam will clear the wires as it stands up straight.

Learn more about trigonometry here:

https://brainly.com/question/11016599

#SPJ12

Final answer:

By applying trigonometry principles, it is determined that the beam will not clear the wires when it is lifted to stand up straight as the top of the beam at 60° angle is lower than the bottom of the wires.

Explanation:

To answer whether the beam will clear the wires when it is lifted, we need to apply basic trigonometry principles. First, we determine the height of the beam when it is at a 40° angle with the ground, and we know the top is 8 ft above the ground. We can use the tangent of the angle to relate this height to the length of the beam, which remains constant as the beam is raised.

So we have tan(40°) = 8ft/beam_length. Solving for beam_length, we get beam_length = 8ft/tan(40°) ≈ 9.442ft.

Next, when the beam makes a 60° angle with the ground, it is not fully raised and the wires are 2ft above the beam's top. The length of the beam when it's at this angle is beam_length = 2ft + height_at_60°. We can use the tangent function again to find this height, which gives us tan(60°) = height_at_60°/beam_length.

Solving for height_at_60°, we get height_at_60° = beam_length * tan(60°), substituting beam_length from earlier, height_at_60° = 9.442ft * tan(60°) ≈ 16.34ft.

As the bottom 2 ft of the wires are not cleared by the 16.34 ft high beam, the conclusion is that the beam will not clear the wires when it is being erected up straight.

Learn more about Mathematics here:

https://brainly.com/question/27235369

#SPJ6

Determine if the function is one-to-one. A decreasing line intercepting the y axis at 0, 5.

Answers

Determine if the function is one-to-one. A decreasing line intercepting the y axis at 0,4

Create a factorable polynomial with a GCF of 2y. Rewrite that polynomial in two other equivalent forms. Explain how each form was created.
I already made my polynomial, 4y^1 + 6y^3
I just don't understand how to get two equivalent forms(please explain if you can)

Answers

4y^1 + 6y^3...so factor out the GCF for another form

2y(2 + 3y^2) <== here is one form

another form would be to multiply ur equation by a multiple of ur GCF 2, such as 4

4(4y^1 + 6y^3) = 16y^1 + 24y^3 <== another form
Other Questions
Where is the primary site of fat digestion and absorption? Find the three arithmetic means in this sequence. 12 __ __ __ 40 What causes an organism to use the process of anaerobic respiration? Two people are traveling and need to exchange the currency of their native country for the currency of the country they are visiting. drag each exchange to match the ratio of currency to currency in each category. In the Civil Rights Act of 1964, Congress vastly expanded the role of the executive branch and the credibility of court orders by ? A rope 18 feet long is cut into two pieces. one piece is used to form a circle and the other used to form a square. find a function representing the area of both square and circle as a function of the length of one side of the square. What is the term for the codes and formats used for the exchange of medical data? Please choose the answer that describes the scientific notation for 3,134,000,000. A. 3.143 1045 B. 3.134 109 C. 3.143 109 D. 31.34 109 Can an executive be forced to function as a sponsor? answwer Find all the points, if any, where the graph of 12x-5y=0 intersects (x+12)^2+(y-5)^2=169. A. There are no points of intersection. B. (0,0)C. (4.5, 10.9)D. (0,0) and (4.5, 10.9) Which of the following undergoes change during a chemical reaction If a coin is tossed twice what is the probability of getting two heads How is the poem "Litany" different from other love poems that use metaphors? A. The poem mixes metaphor and free verse, a rare combination.B. The poet uses a great many more metaphors than are typically found in love poems.C. The poet makes meaningless comparisons, and he also compares his love to what she is not.D. While poetic metaphors are generally extremely elaborate, the metaphors in this poem are simple and unadorned. When you enter a formula into a cell, the results of that calculation displays in the cell. How do you view the formula in the cell after entering it? A. Click the cell and enter the equals sign. B. Click the cell and view the contents of the Formula bar. C. Press Ctrl+~. D. Press Ctrl+Home. During which phase of mitosis do the spindle fibers help to pull the chromosomes to the center of the cell, where they line up? As a result of shifting plates, such as the Caribbean and North American plates and the South American End of exam and Nazca plates, Latin America is prone toA. volcanoes and tsunamis.B. earthquakes and tsunamis.C. volcanoes and earthquakes.D. tsunamis and tornadoes. Two point charges of values +3.4 and +6.6 c are separated by 0.10 m. what is the electrical potential at the point midway between the two point charges? ( simplify the expression and enter your answer below (19^1/9) ^9 If your front lawn is 24.0 feet wide and 20.0 feet long, and each square foot of lawn accumulates 1050 new snow flakes every minute, how much snow (in kilograms) accumulates on your lawn per hour? assume an average snow flake has a mass of 1.70 mg. Raquel is trying to build a new exercise program into her life so that she can become fit and stay that way. her trainer is emphasizing that raquel needs to do aerobic activities that will lower blood pressure and improve heart and lung function. what kind of exercises will the trainer most likelt suggest raquel do? Steam Workshop Downloader