A standard solution of 86% (w/w) H3PO4 (specific density = 1.71 g/mL) is to be diluted to get a1200 mL H3PO4 solution at 4.00 M. How many mL of the standard H3PO4 solution are required?

Answers

Answer 1

Answer: 319 ml

Explanation:

Given : 86 g of [tex]H_3PO_4[/tex] is dissolved in 100 g of solution.

Density of solution = 1.71 g/ml

Volume of solution=[tex]\frac{\text {mass of solution}}{\text {density of solution}}=\frac{100g}{1.71g/ml}=58.5ml[/tex]

moles of [tex]H_3PO_4=\frac{\text {given mass}}{\text {Molar mass}}=\frac{86g}{98g/mol}=0.88mol[/tex]

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution in L}}[/tex]     .....(1)

Molarity of standard [tex]H_3PO_4[/tex] solution =[tex] \frac{0.88\times 1000}{58.5ml}=15.04M[/tex]  

To calculate the volume of acid, we use the equation given by neutralization reaction:

[tex]M_1V_1=M_2V_2[/tex]

where,

[tex]M_1\text{ and }V_1[/tex] are the molarity and volume of standard acid which is [tex]H_3PO_4[/tex]

[tex]M_2\text{ and }V_2[/tex] are the molarity and volume of diluted acid which is [tex]H_3PO_4[/tex]

We are given:

[tex]M_1=15.04M\\V_1=?mL\\\\M_2=4.00M\\V_2=1200mL[/tex]

Putting values in above equation, we get:

[tex]15.04\times V_1=4.00\times 1200\\\\V_1=319mL[/tex]

Thus 319 ml of the standard [tex]H_3PO_4[/tex] solution are required.

Answer 2

To prepare a 1200 mL of 4.00 M H3PO4 solution from an 86% w/w H3PO4 solution with a specific density of 1.71 g/mL, 320 mL of the standard solution is required.

To determine how many milliliters of a standard 86% H3PO4 solution (with a specific density of 1.71 g/mL) are required to prepare a 1200 mL 4.00 M H3PO4 solution, we can use the concept of molarity and the equation M1V1 = M2V2, where M1 and V1 are the molarity and volume of the concentrated solution, and M2 and V2 are the molarity and volume of the diluted solution, respectively.

First, we need to calculate the molarity of the stock solution (86% H3PO4). We know that 86% (w/w) means there are 86 grams of H3PO4 in 100 grams of solution. As the density of the solution is 1.71 g/mL, we can find the volume that 100 grams of solution will occupy:

Volume = mass / density = 100 g / 1.71 g/mL = 58.48 mL

Now, we calculate the mols of H3PO4 in 86 grams:

Moles H3PO4 = mass (g) / molar mass (g/mol) = 86 g / 97.99 g/mol ≈ 0.877 mol

The molarity (M1) of the stock solution is:

Molarity = moles of solute / volume of solution (L) ≈ 0.877 mol / 0.05848 L ≈ 15.00 M

Next, using the dilution equation M1V1 = M2V2, where M2 = 4.00 M and V2 = 1200 mL (1.2 L), we can solve for V1:

V1 = (M2V2) / M1 = (4.00 M * 1.2 L) / 15.00 M = 0.32 L

Since we need the volume in milliliters:

V1 = 0.32 L * 1000 mL/L = 320 mL

Therefore, 320 mL of the standard 86% H3PO4 solution is required to prepare a 1200 mL of 4.00 M H3PO4 solution.


Related Questions

You are asked to give a continuous Albuterol treatment in the ER, all that is available to you is the 2.5 mg in 0.5 mL\ Albuterol vials. The Dr. has asked for 12.5 mg to be delivered over a two-hour period. If the output flow of your continuous nebulizer is 10 mL per hour how much total solution would you need to deliver this treatment? How much Albuterol and how much normal saline would you have to add?

Answers

Answer:

Total 20 mL of solution is needed in which 2.5 m L will be of Albuterol solution and 17.5 mL will be of normal saline solution.

Explanation:

Amount of Albuterol in 1 vial = 2.5 mg/0.5 mL

Volume of dose in which 12.5 mg of Albuterol is present be x.

So,

[tex]\frac{2.5 mg}{0.5 mL}=\frac{12.5 mg}{x}[/tex]

x = 2.5 mL

Volume of  Albuterol solution is 2.5 mL.

If the output flow of your continuous nebulizer is 10 mL per hour.Then in 2 hours total volume of solution delivered = T

T = 10 × 2 mL = 20 mL

Volume of normal saline solution needed = y

T = x + y

y = T - x = 20 mL - 2.5 mL = 17.5 mL

Total 20 mL of solution is needed in which 2.5 mL will be of Albuterol solution and 17.5 mL will be of normal saline solution.

Which of the followings is true about G0'? A. G0' can be determined using Keq' B. G0' indicates if a reaction can occur under non-standard conditions C. G0' is always positive D. G0' is determined at pH 7 and temperature 298 K

Answers

Answer:

A and D are true , while B and F statements are false.

Explanation:

A) True.  Since the standard gibbs free energy is

ΔG = ΔG⁰ + RT*ln Q

where Q= [P1]ᵃ.../([R1]ᵇ...) , representing the ratio of the product of concentration of chemical reaction products P and the product of concentration of chemical reaction reactants R

when the system reaches equilibrium ΔG=0 and Q=Keq

0 = ΔG⁰ + RT*ln Q → ΔG⁰ = (-RT*ln Keq)

therefore the first equation also can be expressed as

ΔG = RT*ln (Q/Keq)

thus the standard gibbs free energy can be determined using Keq

B) False. ΔG⁰ represents the change of free energy under standard conditions . Nevertheless , it will give us a clue about the ΔG around the standard conditions .For example if ΔG⁰>>0 then is likely that ΔG>0 ( from the first equation) if the temperature or concentration changes are not very distant from the standard conditions

C) False. From the equation presented

ΔG⁰ = (-RT*ln Keq)

ΔG⁰>0 if Keq<1 and ΔG⁰<0 if Keq>1

for example, for a reversible reaction  ΔG⁰ will be <0 for forward or reverse reaction and the ΔG⁰ will be >0 for the other one ( reverse or forward reaction)

D) True. Standard conditions refer to

T= 298 K

pH= 7

P= 1 atm

C= 1 M for all reactants

Water = 55.6 M

Fe(s) + 2HCl(aq) --> FeCl2(aq) + H2(g)

When a student adds 30.0 mL of 1.00 M HCl to 0.56 g of powdered Fe, a reaction occurs according to the equation above. When the reaction is complete at 273 K and 1.0 atm, which of the following is true?

A) HCl is in excess, and 0.100 mol of HCl remains unreacted.

D) 0.22 L of H2 has been produced.

The correct answer is D. I can't figure out why A is wrong.

Answers

Option A states that 0.1 moles of HCl remain unreacted. This proves that option A is incorrect. The volume of hydrogen gas produced is 0.22 L. Thus option D is correct.

From the given reaction, 1 mole of Fe and 2 moles of HCl reacts to form 1 mole ferric chloride and 1-mole hydrogen gas.

The number of moles of HCl in 30 ml 1 M solution are:

Moles = molarity [tex]\times[/tex] volume (L)

Moles of HCl = 1 [tex]\times[/tex] 0.03

Moles of HCl = 0.030 moles.

The moles of 0.56 grams Fe powder are :

Moles = [tex]\rm \dfrac{weight}{molecular\;weight}[/tex]

Moles of Fe = [tex]\rm \dfrac{0.56}{56}[/tex] moles

Moles of Fe = 0.01 moles

For the reaction of 1 mole of Fe, 2 moles of HCL is required.

For the reaction of 0.01 moles of Fe, moles of HCl required = 0.01 [tex]\times[/tex] 2

Moles of HCL reacted = 0.02 moles

Total moles of HCL = 0.03 moles

Moles of HCl unreacted = 0.03 - 0.02

Moles of HCl unreacted = 0.01 moles

Option A states that 0.1 moles of HCl remain unreacted. This proves that option A is incorrect.

1 mole of Fe form 1 mole of Hydrogen gas.

0.01 moles of Fe form, 0.01 mole of Hydrogen gas.

From the ideal gas equation:

PV = nRT

1 [tex]\times[/tex] Volume = 0.01 [tex]\times[/tex] 0.0821 [tex]\times[/tex] 273

Volume of Hydrogen gas = 0.22 L.

The volume of hydrogen gas produced is 0.22 L. Thus option D is correct.

For more information about the chemical reaction, refer to the link:

https://brainly.com/question/1689737

Option D is correct since exactly 0.22 L of H₂ is produced, which matches the stoichiometric calculations for the reaction.

To determine why A is incorrect, we need to perform stoichiometric calculations based on the reaction: Fe(s) + 2HCl(aq) --> FeCl₂(aq) + H₂(g). First, calculate the moles of Fe and HCl:

Moles of Fe = 0.56 g / 55.85 g/mol = 0.0100 mol Moles of HCl = 30.0 mL * 1.00 M = 0.0300 mol

The balanced equation shows that 1 mole of Fe reacts with 2 moles of HCl. Therefore, 0.0100 mol of Fe will react with 0.0200 mol of HCl, leaving an excess of 0.0100 mol of HCl (0.0300 mol - 0.0200 mol). However, this contradicts option A which states 0.100 mol HCl remains unreacted.

Now, for option D: 0.0100 mol of Fe will produce 0.0100 mol of H₂. Using the ideal gas law at standard conditions (273 K and 1.0 atm), the volume of H₂ produced is:

V = nRT/P = (0.0100 mol) * (0.0821 L·atm/K·mol) * (273 K) / (1 atm) = 0.22 L

This confirms that D is correct.

The complete question is:

Fe(s) + 2HCl(aq) --> FeCl₂(aq) + H₂(g)

When a student adds 30.0 mL of 1.00 M HCl to 0.56 g of powdered Fe, a reaction occurs according to the equation above. When the reaction is complete at 273 K and 1.0 atm, which of the following is true?

A) HCl is in excess, and 0.100 mol of HCl remains unreacted.

D) 0.22 L of H₂ has been produced.

The correct question is:

To the reaction mixture having reaction as 25 Fe(s) + 2 HCI(aq) -> FeCl₂(aq) + H₂(g), When a student adds 30.0 mL of 1.00 M HCI to 0.56 g of powdered Fe, a reaction occurs according to the equation above. When the reaction is complete at 273 K and 1.0 atm, which of the following is true?

(A) HCI is in excess, and 0.100 mol of HCI remains unreacted.

(B) HCI is in excess, and 0.020 mol of HCI remains unreacted.

(C) 0.015 mol of FeCl₂ has been produced.

(D) 0.22 L of H₂ has been produced.

If 78.2 grams of carbonic acid are sealed in a 2.00 L soda bottle at room temperature (298 K) and decompose completely via the equation below, what would be the final pressure of carbon dioxide assuming it had the full 2.00 L in which to expand? H₂CO₃(aq) → H₂O(l) + CO₂(g)

Answers

Answer: The final pressure of carbon dioxide is 15.4 atm

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

For carbonic acid:

Given mass of carbonic acid = 78.2 g

Molar mass of carbonic acid = 62 g/mol

Putting values in above equation, we get:

[tex]\text{Moles of carbonic acid}=\frac{78.2g}{62g/mol}=1.26mol[/tex]

For the given chemical reaction:

[tex]H_2CO_3(aq.)\rightarrow H_2O(l)+CO_2(g)[/tex]

By Stoichiometry of the reaction:

1 mole of carbonic acid produces 1 mole of carbon dioxide

So, 1.26 moles of carbonic acid will produce = [tex]\frac{1}{1}\times 1.26=1.26mol[/tex] of carbon dioxide

To calculate the pressure, we use the equation given by ideal gas, which follows:

[tex]PV=nRT[/tex]

where,

P = pressure of the carbon dioxide = ?

V = Volume of the container = 2.00 L

T = Temperature of the container = 298 K

R = Gas constant = [tex]0.0821\text{ L. atm }mol^{-1}K^{-1}[/tex]

n = number of moles of carbon dioxide = 1.26 moles

Putting values in above equation, we get:

[tex]P\times 2.00L=1.26mol\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 298K\\\\P=\frac{1.26\times 0.0821\times 298}{2.00}=15.4atm[/tex]

Hence, the final pressure of carbon dioxide is 15.4 atm

Which of the following explains why the entropy change is greater for the dissolution of NaI compared to the dissolution of NaBr?

A. Iodide has weaker ion-dipole interactions with water than bromide.
B. The interactions between bromide ions with other bromide ions is stronger than the interactions between iodide ions with other iodide ions.
C. The more negative change in enthalpy observed with NaI implies greater dissociation and hence greater entropy.
D. The bromide ion has more negative charge than the iodide ion. Therefore, because of the greater charge, it forms a stronger ion-dipole network with water.
E. The cation forms stronger ion-dipole networks with water in NaBr than NaI because of the weaker bond to Br.

Answers

Answer:Iodide has weaker ion-dipole interactions with water than bromide.

Explanation:

The electronegativity difference between sodium and iodine in sodium iodide is about 1.73. This shows that the compound is not composed of purely ionic bonds. Electro negativity decreases down the group hence iodine is far less electronegative than bromine and is thus ineffective in forming strong dipole interactions with water hence the higher entropy due to much less association of ions in solution.

Final answer:

The entropy change for NaI is greater than that for NaBr because iodide ions have weaker ion-dipole interactions with water, leading to a more disordered system and higher entropy upon dissolution.

Explanation:

The entropy change is greater for the dissolution of NaI compared to NaBr because Iodide has weaker ion-dipole interactions with water than bromide. This is attributable to the larger size and more diffuse electron cloud of the iodide ion, which makes its interactions with water molecules less specific and weaker compared to the smaller bromide ion. Due to these weaker interactions, when NaI dissolves, there is a greater increase in disorder or entropy within the system as the iodide ions are less constrained by water molecules relative to bromide ions. Since entropy is a measure of disorder or the number of available microstates for a system, the dissolution of NaI leads to a higher increase in entropy.

The mass of gemstones and pearls is usually expressed in units called carats. One carat is exactly equal to 200 mg. What is the mass in grams for a 9.50 carat diamond?

Answers

Answer: The mass in grams for a 9.50 carat diamond is 1.9.

Explanation:

Given :

The mass of gemstones and pearls is usually expressed in units called carats.

we have to find mass in grams for 9.50 carat diamond.

1 carat = 200 mg

Thus 9.50 carat=[tex]\frac{200}{1}\times 9.50=1900mg[/tex]

Also [tex]1 mg =10^{-3}g[/tex]

Thus  [tex]1900mg =\frac{10^{-3}}{1}\times 1900=1.9g[/tex]

Thus the mass in grams for a 9.50 carat diamond is 1.9

Predict the neutral organic product of the following reaction. Include hydrogen atoms in your structure. When drawing hydrogen atoms on a carbon atom, either include all hydrogen atoms or none on that carbon atom, or your structure may be marked incorrect.Figure:Chemical bonds in the figure

Answers

Answer:

The neutral organic product of the reaction is the 2-methoxy-2-methylpropane, shown in the attached figure.

Explanation:

By reacting an alkene (2-methylprop-1-ene) with an alcohol (methanol) in the presence of an acid it forms an ester (2-methoxy-2-methylpropane) through Markovnikov’s rule. First, a protonation of the alkene occurs where a tertiary carbocation is formed, then the nucleophile (methanol) attacks the previously formed carbocation, and finally ocurr the deprotonation of the hydrogen bound to the oxygen, thus forming the ester, in our case the neutral organic product 2-methoxy-2-methylpropane.

Final answer:

Without information about the reactants and reaction conditions, it is impossible to predict the neutral organic product of a reaction.

Explanation:

The question refers to a reaction and asks for the prediction of the neutral organic product. However, the reaction and reactants are not provided, so it is impossible to provide a specific answer. In organic chemistry, reactions can involve different reactants and conditions, leading to various possible products.

To predict the neutral organic product of a reaction, it is necessary to know the reactants and the specific reaction conditions.

Learn more about Neutral organic product prediction here:

https://brainly.com/question/33408518

#SPJ11

Which of the following contains significant amounts of aluminum oxide (three correct answers): a. alumina b. corundum c. feldspar d. sandstone e. silica f. kaolinite g. quartz h. bauxite

Answers

Final answer:

Alumina, corundum, and bauxite contain significant amounts of aluminum oxide. Alumina is a form of aluminum oxide, corundum is a crystalline form that usually contains traces of other elements, and bauxite is the principal ore of aluminum.

Explanation:

The substances which contain significant amounts of aluminum oxide are alumina, corundum, and bauxite.

Alumina, by its nature, is a form of aluminum oxide. Corundum is a crystalline form of aluminum oxide and typically contains traces of iron, titanium, vanadium, and chromium. Bauxite is the principal ore of aluminum and it primarily consists of one or more aluminum hydroxide minerals, which are often structurally composed of aluminum oxide.

Learn more about Aluminum Oxide here:

https://brainly.com/question/33427899

#SPJ3

A sample of hydrogen gas has a density of ___ g/L at a pressure of 0.799 atm and a temperature of 47 °C. Assume ideal behavior.

Answers

Answer: The density of the given sample of hydrogen gas is 0.061 g/L

Explanation:

Assuming ideal gas behavior, the equation follows:

PV = nRT

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Rearranging the above equation:

[tex]P=\frac{m}{M}\frac{RT}{V}[/tex]

We know that:

[tex]\text{Density}=\frac{\text{Mass}}{\text{Volume}}[/tex]

Rearranging the above equation:

[tex]P=\frac{dRT}{M}[/tex]     ......(1)

We are given:

P = pressure of the gas = 0.799 atm

d = density of hydrogen gas = ?

R = Gas constant = [tex]0.0821\text{ L . atm }mol^{-1}K^{-1}[/tex]

T = temperature of the gas = [tex]47^oC=[47+273]K=320K[/tex]

M = molar mass of hydrogen gas = 2 g/mol

Putting values in equation 1, we get:

[tex]0.799atm=\frac{d\times 0.0821\text{ L.atm }mol^{-1}K^{-1}\times 320K}{2g/mol}\\\\d=\frac{0.799\times 2}{0.0821\times 320}=0.061g/L[/tex]

Hence, the density of the given sample of hydrogen gas is 0.061 g/L

What will be the theoretical yield of tungsten(is) ,W, if 45.0 g of WO3 combines as completely as possible with 1.50 g of H2

Answers

Answer:

35.6 g of W, is the theoretical yield

Explanation:

This is the reaction

WO₃  +  3H₂  →   3H₂O  +  W

Let's determine the limiting reactant:

Mass / molar mass = moles

45 g / 231.84 g/mol = 0.194 moles

1.50 g / 2 g/mol = 0.75 moles

Ratio is 1:3. 1 mol of tungsten(VI) oxide needs 3 moles of hydrogen to react.

Let's make rules of three:

1 mol of tungsten(VI) oxide needs 3 moles of H₂

Then 0.194 moles of tungsten(VI) oxide would need (0.194  .3) /1 = 0.582 moles (I have 0.75 moles of H₂, so the H₂ is my excess.. Then, the limiting is the tungsten(VI) oxide)

3 moles of H₂ need 1 mol of WO₃ to react

0.75 moles of H₂ would need (0.75 . 1)/3 = 0.25 moles

It's ok. I do not have enough WO₃.

Finally, the ratio is 1:1 (WO₃ - W), so 0.194 moles of WO₃ will produce the same amount of W.

Let's convert the moles to mass (molar mass  . mol)

0.194 mol . 183.84 g/mol = 35.6 g

An element is said to be enriched with respect to a particular isotope if it has an unnaturally large abundance of that isotope. Consider a sample of Cl2 that is enriched with 35CI 35C1 mass = 34.97 amu abundance = 85.00 % 37C1 mass = 36.97 amu abundance = 15.00 % (a) Calculate the atomic weight of the enriched Cl (b) How many Cl2 molecules are in a 0.345 g sample of the enriched chlorine?

Answers

Answer:

(a) Atomic Mass = 35.24

(b) 2.95x10²¹ Cl₂ molecules

Explanation:

In the attached picture you may read your question, written in a different format.

(a) We calculate the atomic weight of the enriched Cl using the abundances and masses of the isotopes:

Atomic Mass = 34.97 * 0.85 + 36.79 * 0.15 Atomic Mass = 35.24 amu

(b) We use the previously calculated atomic mass and use it as molar mass (35.24 g/mol), alongside Avogadro's number:

Molar mass of Cl₂ = 35.24 * 2  = 70.48 g/mol0.345 g ÷ 70.48 g/mol = 4.90x10⁻³ mol Cl₂4.90x10⁻³ mol Cl₂ * 6.023x10²³ molecules/mol = 2.95x10²¹ Cl₂ molecules

a.) If sodium is irradiated with light of 439 nm, what is themaximum possible kinetic energy of the emitted electrons?

b.) What is the maximum number of electrons that can be freedby a burst of light whose total energy is 1.00μJ?

Answers

Final answer:

This problem is about the Photoelectric Effect in quantum physics, calculating the maximum kinetic energy of emitted electrons and the maximum number of freed electrons due to light exposure.

Explanation:

The questions are related to the Photoelectric Effect, a fundamental concept in quantum physics.

a.) The relationship between the frequency of light and the maximum kinetic energy of emitted electrons is given by the formula: E = hf – W, where E is the maximum kinetic energy, h is Planck’s constant, f is the frequency of light, and W is the work function of the material. The frequency can be found from the speed of light divided by the given wavelength (439 nm).

b.) The maximum number of electrons freed by light depends on the energy of the photons and the material's work function. You can find this by dividing the total energy of the burst of light (1.00μJ) by the energy required to remove one electron.

Learn more about Photoelectric Effect here:

https://brainly.com/question/12732631

#SPJ3

In order to understand the prehistory of the Hawaiian island of Lana'i better, anthropologists Maria Sweeney, Melinda Allen, andBoyd Dixon used radiocarbon dating on charcoal found in an ancient dwelling site, the Kaunolu Village National Historic Landmark, the largest archeological complex on the island. In one of their samples, they found that approximately 94% of the original carbon 14 remained. Using the fact that Carbon 14 decays by 1.202% every 100 years, determine the approximate age of this sample.

Answers

Answer:

500 years

Explanation:

The original carbon-14 was 100%, and after 100 years, it decays 1.202%. So after 100 years it goes to 98.798%, after more 100 years (200 years), it will be 97.596% (98.798 - 1.202), thus, after n 100 years "package", the percenatge will be:

100% - actual% = n*1.202

n = (100% - actual%)/1.202

n = (100% - 94%)/1.202

n = 4.992

So, the number of years is n*100 = 4.992*100 = 499.2 ≅ 500 years.

Before entering the cyclotron, the particles are accelerated by a potential difference V. Find the speed v with which the particles enter the cyclotron. Express your answer in terms of V, m, and q.

Answers

Answer:

Speed, [tex]v=\sqrt{\dfrac{2qV}{m}}[/tex]

Explanation:

The device which is used to accelerate charged particles to higher energies is called a cyclotron. It is based on the principle that the particle when placed in a magnetic field will possess a magnetic force. Just because of this Lorentz force it moves in a circular path.  

Let m, q and V are the mass, charge and potential difference at which the particle is accelerated.

The work done by the particles is equal to the kinetic energy stored in it such that,

[tex]qV=\dfrac{1}{2}mv^2[/tex]

v is the speed with which the particles enter the cyclotron

So,

[tex]v=\sqrt{\dfrac{2qV}{m}}[/tex]

So, the speed with which the particles enter the cyclotron is [tex]v=\sqrt{\dfrac{2qV}{m}}[/tex]. Hence, this is the required solution.

Final answer:

The speed of particles entering a cyclotron, given a potential difference V, particle mass m, and particle charge q, can be calculated using the formula v = sqrt((2qV) / m). This is based on the conversion of electrical potential energy to kinetic energy in the system.

Explanation:

In a cyclotron, the electrical potential energy of the particles is converted into kinetic energy. This follows the conservation of energy principle, and this transformation is described by the equation for kinetic energy, K.E. = 1/2 mv². In this case, the kinetic energy is equivalent to the energy gained from the electrical potential difference, qV (where q is the charge of the particle and V is the potential difference).

So, the equation becomes qV = 1/2 mv². Solving for the final speed v, we find that v = sqrt((2qV) / m). This equation allows us to calculate the speed at which particles enter the cyclotron, directly determined by the potential difference, particle charge (q), and particle mass (m).

Learn more about Accelerated Particles in a Cyclotron here:

https://brainly.com/question/14510972

#SPJ3

How many moles of ScCl3 can be produced when 10.00 mol Sc react with 9.00 mol Cl2

Answers

Answer:

Moles of [tex]ScCl_3[/tex] = 6 moles

Explanation:

The reaction of [tex]Sc[/tex] and [tex]Cl_2[/tex] to make [tex]ScCl_3[/tex] is:

[tex]2Sc+3Cl_2[/tex][tex]2ScCl_3[/tex]

The above reaction shows that 2 moles of Sc  can react with 3 moles of [tex]Cl_2[/tex] to form [tex]ScCl_3.[/tex]

Mole Ratio= 2:3

For 10 moles of Sc we need:

Moles of [tex]Cl_2[/tex] = [tex]Moles of Sc *\frac{3 moles of Cl_2}{2 Moles of Sc}[/tex]

Moles of [tex]Cl_2[/tex] = [tex]10 *\frac{3 moles of Cl_2}{2 Moles of Sc}[/tex]

Moles of [tex]Cl_2[/tex] =15 moles

So 15 moles of [tex]Cl_2[/tex] are required to react with 10 moles of [tex]Sc[/tex] but we have 9 moles of [tex]Cl_2[/tex] , it means [tex]Cl_2[/tex] is limiting reactant.

[tex]Moles of ScCl_3=Given\ Moles\ of\ Cl_2 *\frac{2\ Moles\ o\ fScCl_3}{3\ Moles\ of\ Cl_2}[/tex]

[tex]Moles\ of\ ScCl_3=9 *\frac{2\ Moles\ of\ ScCl_3}{3\ Moles\ of\ Cl_2}[/tex]

Moles of ScCl_3= 6 moles

Answer:

6.00 moles of ScCl3 will be produced.

Explanation:

Step 1: Data given

Moles of Sc = 10.00 moles

Moles of Cl2 = 9.00 moles

Molar mass of Sc = 44.96 g/mol

Molar mass of Cl2 = 70.9 g/mol

Step 2: The balanced equation

2Sc + 3Cl2 → 2ScCl3

Step 3: Calculate the limiting reactant

For 2 moles Sc we need 3 moles Cl2 to produce 2 moles ScCl3

Cl2 is the limiting reactant. It will completely be consumed (9.00 moles)

Sc is the limiting reactant. There will react 2/3 * 9.00 = 6.00 moles

There will remain 10.00 - 6.00 =4.00 moles Sc

Step 4: Calculate moles ScCl3

For 3 moles Cl2 we'll have 2 moles ScCl3

For 9.00 moles we'll have 6.00 moles of ScCl3

6.00 moles of ScCl3 will be produced.

When a field is declared static, there will be:
A. a copy of the field in each class object
B. only one copy of the field in memory
C. a copy of the field for each static method in the class
D. only two copies of the field in memory

Answers

Answer:

B. only one copy of the field in memory

Explanation:

A static method is sort of a description of a class but is not part of the objects that it generates. Crucial: A program may perform a static method without constructing an object first! All other functions (those not static) only occur when they're member of an object. Thus it is necessary to build an object before they could be executed.

Therefore, when an static field is declared static, there will be:

B. only one copy of the field in memory

Provide an appropriate alkyne starting material A and intermediate product B. Omit byproducts. The number of carbon atoms in the starting material should be the same as in the final product.

Answers

Final answer:

An appropriate alkyne starting material A could be 2-butyne (C4H6). An intermediate product B could be but-2-en-1-yne (C4H4). Both the starting material and the intermediate product have the same number of carbon atoms.

Explanation:

An appropriate alkyne starting material A could be 2-butyne (C4H6).

An intermediate product B could be but-2-en-1-yne (C4H4).

Both the starting material and the intermediate product have the same number of carbon atoms.

If 2.25 g of NH 3 reacts with 3.38 g of O2 and produces 0.450 L of N 2 at 295 K and 1.00 atm , which reactant is limiting?

Answers

Answer:

NH3 is the limiting reactant. O2 is in excess and there will remain 0.224 grams O2

Explanation:

Step 1: Data given

Mass of NH3 = 2.25 grams

Mass of O2 = 3.38 grams

Volume of N2 = 0.450 L

Temperature = 295 K

Pressure = 1.00 atm

Molar mass NH3 = 17.03 g/mol

Molar mass O2 = 32 g/mol

Molar mass of N2 = 28 g/mol

Molar mass of H2O = 18.02 g/mol

Step 2: The balanced equation

4NH3 + 3O2 → 2N2 + 6H2O

Step 3: Calculate moles NH3

Moles NH3 = mass NH3 / molar mass NH3

Moles NH3 = 2.25 grams / 17.03 g/mol

Moles NH3 = 0.132 moles

Step 4: Calculate moles O2

Moles O2 = mass O2  / molar mass O2

Moles O2 = 3.38 grams / 32 g/mol

Moles O2 = 0.106 moles

Step 5: Calculate limiting reactant

For 4 moles NH3 we need 3 moles O2 to produce 2 moles N2 and 6 moles H2O

NH3 is the limiting reactant. It will completely be consumed (0.132 moles)

O2 is in excess. There will react 3/4 * 0.132 = 0.099 moles O2

There will remain 0.106 -0.099 = 0.007 moles O2

This is 0.007 moles * 32 g/mol = 0.224 grams

NH3 is the limiting reactant. O2 is in excess and there will remain 0.224 grams O2

Calculate the volume in liters of a M potassium dichromate solution that contains of potassium dichromate . Round your answer to significant digits.

Answers

The question is incomplete, here is the complete question:

Calculate the volume in liters of a 0.13 M potassium dichromate solution that contains 200. g of potassium dichromate . Round your answer to 2 significant digits.

Answer: The volume of solution is 5.2 L

Explanation:

To calculate the volume of solution, we use the equation used to calculate the molarity of solution:

[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}}{\text{Molar mass of solute}\times \text{Volume of solution (in L)}}[/tex]

We are given:

Molarity of solution = 0.13 M

Given mass of potassium dichromate = 200. g

Molar mass of potassium dichromate = 294.15 g/mol

Putting values in above equation, we get:

[tex]0.13M=\frac{200}{294.15\times \text{Volume of solution}}\\\\\text{Volume of solution}=\frac{200}{294.15\times 0.13}=5.23L[/tex]

Hence, the volume of solution is 5.2 L

Final answer:

The volume of a potassium dichromate solution containing 1.8 moles cannot be calculated without the molarity of the solution. Once molarity is known, use V = n / M and convert to liters, considering significant figures for accuracy.

Explanation:

To calculate the volume of a potassium dichromate solution that contains 1.8 moles of potassium dichromate, we must first determine the molarity (M) of the solution, which is not provided in the question. Assuming we have this information, the formula to find the volume (V) when the number of moles (n) and molarity (M) are known is:V = n / M

Without a given molarity, we cannot proceed with this calculation. If molarity is provided, we'd convert it to liters. Since the molarity and actual number of grams of potassium dichromate were not provided in your question, we cannot complete this calculation precisely. However, the reference provided for preparing a different solution with KBrO3 and the details about significant figures indicate that calculations should be made using suitable glassware for precision and rounding off to the correct number of significant digits.

Which of the following compounds can be labeled as Lewis acids. There may be more than one answer.

a. BBr3
b. CH3CH2OH
c. (CH3)3C+
d. Br—

Answers

Explanation:

According to Lewis, acids are the species which readily accept electrons. Whereas bases are the species which donate electrons to electron deficient or electropositive ions.

Out of the given options, boron of [tex]BBr_{3}[/tex] and carbon of [tex](CH_{3})_{3}C^{+}[/tex] contain sextet of electrons. This means that they have accepted electrons from the combining atoms.

Thus, we can conclude that out of the given options [tex]BBr_{3}[/tex] and [tex](CH_{3})_{3}C^{+}[/tex] compounds can be labeled as Lewis acids.

BBr3 and (CH3)3C+ are the compounds that can be labeled as Lewis acids because they can accept a pair of electrons due to having an incomplete octet and a positively charged center respectively.

In the context of Lewis acid-base theory, a Lewis acid is a compound that can accept a pair of electrons, while a Lewis base is one that can donate a pair of electrons. Considering the options given:

BBr3 — Boron trichloride is a classic example of a Lewis acid because it has an incomplete octet and can accept electrons.CH3CH2OH (Ethanol) — Ethanol is not typically considered a Lewis acid as it does not have a positive center or a place to accept electrons readily. It is more often a Lewis base because of the lone pairs on the oxygen atom.(CH3)3C+ — The trialkylmethyl cation (often called a carbocation) is an electron-deficient species and thus can act as a Lewis acid by accepting a pair of electrons.Br− (Bromide ion) — This is a Lewis base as it has a lone pair of electrons that it can donate, not a Lewis acid.

Thus, BBr3 and (CH3)3C+ can be labeled as Lewis acids.

The freezing point of an aqueous solution containing an unknown solute is -2.60 degC. The solution was prepared by dissolving 5.00 g of a nonelectrolytic solute in 100. mL of water. What is the molar mass of the unknown solute?

Answers

Answer: The molar mass of the unknown solute is 35.8 g/mol

Explanation:

Depression in freezing point is given by:

[tex]\Delta T_f=i\times K_f\times m[/tex]

[tex]\Delta T_f=T_f^0-T_f=(0-(-2.60))^0C=2.60^0C[/tex] = Depression in freezing point

i= vant hoff factor = 1 (for non electrolyte)

[tex]K_f[/tex] = freezing point constant = [tex]1.86^0C/m[/tex]

m= molality

[tex]\Delta T_f=i\times K_f\times \frac{\text{mass of solute}}{\text{molar mass of solute}\times \text{weight of solvent in kg}}[/tex]

Weight of solvent (water)=[tex]density\times volume =1.00g/ml\times 100ml=100g=0.1kg[/tex]      (1kg=1000g)

Molar mass of unknown non electrolyte = M g/mol

Mass of unknown non electrolyte added = 5.00 g

[tex]2.60=1\times 1.86\times \frac{5.00g}{M g/mol\times 0.100kg}[/tex]

[tex]M=35.8g/mol[/tex]

The molar mass of the unknown solute is 35.8 g/mol

Final answer:

The molar mass of the unknown nonelectrolytic solute is found through computing freezing point depression and molality, resulting in a molar mass of approximately 35.71 g/mol.

Explanation:

To solve this problem, we need to first determine the freezing point depression. Normal freezing point of water is 0°C but in this case, it is -2.60°C, hence the depression is 2.60°C. We also use the known value of the molal freezing point depression constant for water (1.86°C/m).

The formula for freezing point depression is ΔTF = KF * m, where m is the molality of the solution. By re-arranging this equation to solve for molality (m), we get m = ΔTF / KF.

Substituting the known values: m = 2.60°C / 1.86°C/m = 1.40 m. Molality means moles of solute per kilogram of solvent. In this case, we have 100 mL of water, or 0.1 kg. Therefore, the number of moles = 1.40 mol/kg * 0.1 kg = 0.14 mol.

To find the molar mass, we know that mass = number of moles * molar mass. Again, rearranging to solve for molar mass, we find that molar mass = mass / number of moles. So, substituting the known values, molar mass = 5.00g / 0.14 mol = approximately 35.71 g/mol.

Therefore, the molar mass of the unknown nonelectrolytic solute is approximately 35.71 g/mol.

Learn more about Molar Mass Calculation here:

https://brainly.com/question/16034692

#SPJ3

SO2________________.

a. Dipole-dipole bonding
b. London dispersion forces
c. Hydrogen-bonding
d. Ion-dipole bonding

Answers

Answer:

a. Dipole-dipole bonding

Explanation:

SO2 has dipole-dipole bonding. This is because of the difference in the electronegativities  of Sulphur and oxygen. Moreover, the lone pair of electrons on S gives it bent shape with a net dipole  unlike CO2 which has a linear shape.( This why CO2 does not have any dipole moment).

So, the correct answer is a.

For any enzyme, what would the initial velocity be, as a percent (%) of Vmax, if the [S] was equal to Km/10?

Answers

Answer:

The initial velocity as a percentage of Vmax is 1100%

Explanation:

From Michaelis Menten equation,

Vo = Vmax[S]/Km+[S]

Vo/Vmax = [S]/Km+[S]

Expressing the initial velocity as a percentage of Vmax is

Vmax/Vo = Km+[S]/[S] × 100

[S] = Km/10

Km = 10[S]

Vmax/Vo = 10[S]+[S]/[S] × 100 = 11[S]/[S] ×100 = 11×100 = 1100%

Final answer:

The initial velocity of an enzyme, as a percentage of Vmax, is 10% when the substrate concentration is equal to Km/10.

Explanation:

The initial velocity of an enzyme, as a percentage of Vmax, can be calculated using the Michaelis-Menten equation. Let's assume that the substrate concentration [S] is equal to Km/10. The Michaelis constant (Km) represents the substrate concentration at which the velocity is half of Vmax.

Therefore, if [S] = Km/10, the velocity would be 10% of Vmax. This means that the initial reaction rate is only 10% of the maximum rate that can be achieved when all enzyme active sites are saturated.

Learn more about enzyme kinetics here:

https://brainly.com/question/31834263

#SPJ11

What factors should be taken into consideration when choosing the ideal solvent for the crystallization of a particular compound?

Answers

Final answer:

The factors to consider when choosing the ideal solvent for crystallization include solubility properties, intermolecular forces, polarity, and solvent properties such as reactivity, cost, toxicity, and boiling point.

Explanation:

When choosing the ideal solvent for the crystallization of a particular compound, several factors should be taken into consideration:

Solubility properties: The compound should be soluble in the hot solvent and as insoluble as possible in the cold solvent.Intermolecular forces: The compound and solvent should have similar intermolecular forces.Polarity: If the compound has hydrogen bonding capabilities, it can be crystallized from water. If it is moderately polar, ethanol may be used. If it is mostly nonpolar, petroleum ether or hexanes are suitable solvents.Solvent properties: An ideal solvent should be unreactive, inexpensive, and have low toxicity. It should also have a relatively low boiling point to facilitate evaporation from the solid.

Use the distance formula to find the distance between each pair of points W (-1,4), T(-4,-1)

Answers

Answer: 5.8

Explanation:

the formula:

d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2\,}d=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

When computing using dimensional analysis:
Select the correct answer below:
O all unit conversions must be done separately.
O all unit conversions must be done in a singular calculation.
O unit conversions can be done either simultaneously or separately.
O unit conversions are not a part of dimensional analysis.

Answers

Answer: unit conversions can be done either simultaneously or separately

Explanation:

Final answer:

Dimensional analysis involves converting units within a singular calculation. It is a technique used frequently in fields like physics and engineering. Conversion factors in terms of desired and given units are used in the process.

Explanation:

When computing using dimensional analysis, all unit conversions must be done in a singular calculation. Dimensional analysis is a mathematical method often used in physics and engineering, and it provides a means of converting from one unit to another.

In the process of dimensional analysis, we use conversion factors that are expressed in terms of the desired unit and the given unit.

It is specifically helpful when you want to convert from one system of measurement to another, or when you need to solve a complex problem involving several different units.

Learn more about Dimensional Analysis here:

https://brainly.com/question/32018569

#SPJ6

n aqueous solution at has a concentration of . Calculate the concentration. Be sure your answer has 1 significant digits.

Answers

The question is incomplete, here is the complete question:

An aqueous solution at 25°C has a [tex]H_3O^+[/tex] concentration of [tex]8.8\times 10^{-12}M[/tex] . Calculate the [tex]OH^-[/tex] concentration. Be sure your answer has the correct number of significant digits.

Answer: The hydroxide ion concentration of the solution is [tex]0.1\times 10^{-2}M[/tex]

Explanation:

To calculate the pH of the solution, we use the equation:

[tex]pH=-\log[H_3O^+][/tex]

We are given:

[tex][H_3O^+]=8.8\times 10^{-12}M[/tex]

Putting values in above equation, we get:

[tex]pH=-\log (8.8\times 10^{-12})\\\\pH=11.05[/tex]

To calculate the hydroxide ion concentration, we first calculate pOH of the solution, which is:

pH + pOH = 14

[tex]pOH=14-11.05=2.95[/tex]

To calculate hydroxide ion concentration of the solution, we use the equation:

[tex]pOH=-\log[OH^-][/tex]

We are given:

pOH = 2.95

Putting values in above equation, we get:

[tex]2.95=-\log[OH^-][/tex]

[tex][OH^-]=10^{-2.95}[/tex]

[tex][OH^-]=1.12\times 10^{-3}M=0.1\times 10^{-2}M[/tex]

Hence, the hydroxide ion concentration of the solution is [tex]0.1\times 10^{-2}M[/tex]

A chemist prepares a solution of iron chloride by measuring out of into a volumetric flask and filling to the mark with distilled water. Calculate the molarity of anions in the chemist's solution.

Answers

Complete Question:

A chemist prepares a solution of iron chloride by measuring out 0.10 g of FeCl2 into a 50. mL volumetric flask and filling to the mark with distilled water. Calculate the molarity of anions in the chemist's solution.

Answer:

[Fe+] = 0.0156 M

[Cl-] = 0.0316 M

Explanation:

The molar mass of iron chloride is 126.75 g/mol, thus, the number of moles presented in 0.10 g of it is:

n = mass/molar mass

n = 0.10/126.75

n = 7.89x10⁻⁴ mol

In a solution, it will dissociate to form:

FeCl2 -> Fe+  + 2Cl-

So, the stoichiometry is 1:1:2, and the number of moles of the ions formed are:

nFe+ = 7.89x10⁻⁴ mol

nCl- = 2*7.89x10⁻⁴  = 1.58x10⁻³ mol

The molarity is the number of moles divided by the solution volume, in L (50.0 mL = 0.05 L):

[Fe+] = 7.89x10⁻⁴/0.05 = 0.0156 M

[Cl-] = 1.58x10⁻³/0.05 = 0.0316 M

A crystalline solid has a high melting point and is known to be held together with covalent bonds. This solid is an example of _____.

A. A network covalent solid
B. An ionic solid
C. A metallic solid
D. A molecular solid

Answers

Final answer:

Option A is the correct answer .The crystalline solid described is a network covalent solid, which is characterized by a three-dimensional network of covalent bonds, leading to features like exceptional hardness and high melting points.

Explanation:

A crystalline solid with a high melting point and held together with covalent bonds is an example of a network covalent solid. These solids are formed by atoms that are covalently bonded in a large, continuous three-dimensional network. Network covalent solids, which include materials like diamond and silicon dioxide, are known for their hardness, strength, and very high melting points, often requiring the breaking of strong covalent bonds to melt or to break the solid.

Unlike ionic and metallic solids, network covalent solids are poor conductors of electricity, as they are made up of neutral atoms instead of charged ions. These properties make network covalent solids distinct from other types of crystalline solids, which include ionic, molecular, and metallic solids, each characterized by their own unique bonding and structural features.

An empty beaker weighs 34.55 g.

a) When completely filled with water, the beaker and its contents have a total mass of 440.85 g. What volume does the beaker hold? Use d =1.00 g/mL as the density of water.

.......mL

b) How much would the beaker and its contents weigh if it was completely filled with mercury? The density of mercury is d =13.5 g/mL.

......... g

Answers

Answer:

a. 406.3mL

b. 5519.6g

Explanation:Please see attachment for explanation

Other Questions
Sam bought 2 granola bars and Haley Bought 5 granola bars each granola bar is the same price right in expression for the total price of the granola bars then simplify the expression to create an equivalent expression A fruit company delivers its fruit in two types of boxes: large and small. A delivery of 4 large boxes and 8 small boxes has a total weight of 197 kilograms. A delivery of 2 large boxes and 3 small boxes has a total weight of 83 kilograms. How much does each type of box weigh? HELP ASAP Which theme of geography is explored in the following statements?Most of Mongolia is covered by steppes. The country hashigh yield deposits of copper, gold, and coal.OA. LocationB. RegionOc. MovementOD. Place A planet is discovered orbiting around a star in the galaxy Andromeda at the same distance from the star as Earth is from the Sun. If that star has four times the mass of our Sun, how does the orbital period of the planet compare to Earth's orbital period? A planet is discovered orbiting around a star in the galaxy Andromeda at the same distance from the star as Earth is from the Sun. If that star has four times the mass of our Sun, how does the orbital period of the planet compare to Earth's orbital period? The planet's orbital period will be four times Earth's orbital period. The planet's orbital period will be one-half Earth's orbital period. The planet's orbital period will be one-fourth Earth's orbital period. The planet's orbital period will be equal to Earth's orbital period. The planet's orbital period will be twice Earth's orbital period. David and Derek, who are visiting India together for the first time, are inclined to stereotype the locals and complain about hotels and restaurants that they feel don't measure up to American standards. Which quality that helps develop intercultural communication competence are they most evidently lacking?a. Knowledge and skillb. Patience and perseverancec. Tolerance for ambiguityd. Open-mindedness Examine the shape of the shoreline of Red Sea. Which of the following set of observations offers the best evidence that the northeast (right-hand) and southwest (left-hand) shores of the Red Sea were once joined to each other?a) the jigsaw-puzzle-like fit of the shorelines with each other, old rocks on the northeast shore, and young rocks on the southwest shore.b) the jigsaw-puzzle-like fit of the shorelines with each other, and rocks of similar age on opposite shores of the Red Sea.c) the varying width of the sea, old rocks on the northeast shore, and young rocks on the southwest shore.d) the varying width of the sea, and rocks of similar age on opposite shores of the Red Sea. Can someone plz help me with this problem? Green, a calendar-year taxpayer, is preparing a personal statement of financial condition as of April 30, Year 4. Greens Year 3 income tax liability was paid in full on April 15, Year 4. Greens tax on income earned between January and April Year 4 is estimated at $20,000. In addition, $40,000 is estimated for income tax on the differences between the estimated current values and current amounts of Greens assets and liabilities and their tax bases at April 30, Year 4. No withholdings or payments have been made towards the Year 4 income tax liability. In Greens April 30, Year 4, statement of financial condition, what amount should be reported for income taxes?A $40,000B $20,000C $0D $60,000 HURRY PLEASE,WILL MARK BRAINLIEST What idea, achievement, or life event is associated with Aristotle? analyzed how people used and could use logic wrote works praising one of the other philosophers who left no writings taught by asking questions A small processor of specialized steel agreed in writing with a small manufacturer of children's toys that it would supply, and the manufacturer would buy, all of the manufacturer's specialized steel requirements over a period of years at a set price per ton of steel. Their contract did not include a nonassignment clause. Recently, the toy manufacturer decided to abandon its line of steel toys, so it made an assignment of its rights and delegation of its duties under the contract to a toymaker many times larger. The large toymaker notified the steel processor of the assignment and relayed to the processor its good faith belief that its requirements will approximate those of the assignor.Must the steel processor supply the requirements of the large toymaker?A. Yes, because there was no nonassignment clause in the contract.B. Yes, because the large toymaker acted in good faith to assure the steel processor that its requirements will approximate those of the small manufacturer into whose shoes it stepped.C. No, because requirements contracts are not assignable under the UCCD. No, because the steel processor did not give prior approval of the assignment. need help asapSolve the equation by completing the square-2x^2+x=0a. {0,-0.5}b. {1,0}c. {0.5,0}d. {0} The graphs of f(x) and g(x) are shown below.On a coordinate plane, a straight line with a positive slope represents f (x) = x minus 3. The line goes through (0, negative 3) and (3, 0). On a coordinate plane, a straight line with a negative slope represents g (x) = negative 0.5 x. The line goes through (negative 4, 2), (0, 0), and (4, negative 2)For what interval is the value of (f g)(x) negative?(negative infinity, negative 1)(negative infinity, 2)(0, 3)(2, infinity) If you place a 89-foot ladder against the top of a 80-foot building, how many feet willthe bottom of the ladder be from the bottom of the building? How can a system administrator meet this requirement? Sales representatives at Universal Containers perform the initial steps in the lead qualification process and sales managers complete the final qualification steps. Universal Containers' requirements include those listed below.Sales managers can access all lead status values.Sales representatives can only access the first three lead status values.Sales representatives cannot access the final two lead status values.A. Create two separate lead page layouts.B. Create two separate lead processes and record types.C. Use field-level security to restrict access to the lead status values.D. Create a validation rule to prevent lead conversion. The main road in Belleville is 7 3/10 Miles long so far 2 3/4 miles have been repaved. How many miles have not been repaved what is the kentic energy of a 2 kg ball as it falls half way from a 40 meter tall building True or false? Althusser states that all of the following institutions serve as ISAs: religious, educational, family, legal, political, trade-union, communications, and cultural. Fossilization continues even today. If you wanted to increase the probability that your deceased favorite pet would become fossilized, what actions would you take? Whenever Ashley needs to meet with the programmer assigned to her department, Rajiv who was born in India, she is anxious because she believes all Indian men have sexist attitudes toward women. Ashley is ______ Rajiv Simplify the following expressions by combining like terms. 10z-11z+2-5= Steam Workshop Downloader