C3H8 + 5O2 → 3CO2 + 4 H2O



How many moles of C3H8 must be reacted to form exactly 10.0 g of H2O?

0.139 mol
0.250 mol
40.0 mol
0.400 mol

Answers

Answer 1

Answer:

0.139

Explanation:

First find how many moles of h2o give you 10g then use the mole ratio to find what mole of c3h8 is required to get you that number of moles

Answer 2

Answer:

0.139 moles of C3H8 must be reacted to form exactly 10.0 g of H2O

Explanation:

The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three. Remember that proportionality is a constant relationship or ratio between different magnitudes.

If the relationship between the magnitudes is direct, that is, when one magnitude increases, so does the other (or when one magnitude decreases, so does the other) , the direct rule of three must be applied. To solve a direct rule of three, the following formula must be followed:

a ⇒ b

c ⇒ x

[tex]x=\frac{c*b}{a}[/tex]

It is possible to use the reaction stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction) and the rule of three to determinate the moles of C₃H₈ that must be reacted to form exactly 10.0 g of H₂O.  But first you must know the amount of moles that represent the 10 g of H₂O.

You know that:

O= 16 g/molH=1 g/mol

Then,  the mass of H₂O is 2*1 g/mol + 16 g/mol= 18 g/mol

Then it is possible to apply a rule of three: if 1 mole of H₂O contains 18 grams, how many moles will contain 10 grams?

[tex]moles of H2O=\frac{10 grams*1 mole}{18 grams}[/tex]

moles of H₂O=0.556

Then, to determine the moles of C₃H₈ that must react to form exactly 10.0 g of H₂O it is possible to use a rule of three, as previously mentioned: if by stoichiometry 4 moles of H₂O are formed from 1 moles of C₃H₈, when are formed 0.55 moles of H₂O How many moles of C₃H₈ will be needed?

[tex]moles of C3H8=\frac{0.556molesofH2O*1molesofC3H8}{4molesofH2O}[/tex]

moles of C₃H₈= 0.139

Finally, 0.139 moles of C3H8 must be reacted to form exactly 10.0 g of H2O


Related Questions

There are 3 beakers each of which contains saline solution.
Beaker A initially contains 3 liters of 10\% salt solution.
Beaker B initially contains 2 liters of 20\% salt solution.
Beaker C initially contains 4 liters of 0\% salt solution.

Two liters are transferred from A to B and the result is thoroughly mixed. Then one liter is transferred from B to C and the result mixed. Finally two liters are transferred from C back to A. What is the percentage concetration of salt in A after all this?

Percentage concentration of salt in A=____ \%

Answers

Answer:

Percentage concentration of salt in A = 5.3%

Explanation:

Assume all the concentrations are expressed in volumetric terms, i.e 10% = 10 liter salt / 100 liter solution, 20% = 20 liter salt / 100 liter soluton, 0% = 0 liters salt.

1) First transformation: 2 liters are from A to B

Solution A:

Concentration: 10 % salt ⇒ 10 liter salt / 100 liter solution

Volume of solution: 3 liters

Volume of salt: 3 liters × 10 liter / 100 liters = 0.300 liter salt

Volume of water: 3 liters - 0.300 liters = 2.700 liters solvent

Solution B:

Concentraion: 20%

Volume of solution: 2 liter

Volume of salt: 2 liter × 0.20 = 0.4 liter salt

Volume of water: 2 liter - 0.4  liter = 1.6 liter water

Resultant mixture in beaker B: 2 liters of solution A plus 2 liters of solution B

Salt: 2 liter × 0.10 + 2 liter × 0.20 = 0.20 + 0.4 = 0.6 liter salt

                             

Water: 2 liter × 0.90 + 2 liter × 0.80 = 3.40 liter water

Solution: 2 liter + 2 liter = 4 liter solution

Concentration: 0.6 liter salt / 4 liter solution = 0.15 = 15%

2) Second transformation: 1 liter transferred from B to C

Salt: 1 liter × 0.15 + 0 = 0.15 liter salt

                       ↑              ↑

                  (from B)     ( in C)

Solution: 1 liter + 4 liter = 5 liter solution

Concentration: 0.15 liter salt / 5 liter solution = 0.03 = 3.0%

3) Third transformation: 2 liters are from C to A.

Salt: 0.03 liter salt × 2 liter solution + 1 liter × 0.10 = 0.16 liter salt

                                       ↑                                    ↑

                                (from C)                             (in A)

Solution: 2 liter + 1 liter = 3 liter solution

% of salt in A = (0.16 liter salt / 3 liter solution) × 100 =5.3 %

In a nonpolar covalent bond,
protons are shared equally by two atoms.
electrons are shared equally by two atoms.
electrons are shared unequally by two atoms.
protons are transferred from one atom to another.

Which molecule below has a triple covalent bond?
Diatomic Fluorine
Diatomic Nitrogen
Diatomic Oxygen
Diatomic Hydrogen

Answers

Answer:

#11: In a nonpolar covalent bond, electrons are shared equally between two atoms.

#12: Only the diatomic nitrogen molecule [tex]\rm N_2[/tex] contains a triple covalent bond among the four molecules.

Explanation:

#11

Consider: what is a covalent bond?

Two atoms share a pair of electrons (called a bonding pair as opposed to a lone pair) between them.

Nonpolar covalent bonds exist only between atoms with similar electronegativity values. The two bonding atoms attract the bonding pair with similar strength, such that the bonding pair is shared mostly equally between the two atoms.

In case the two atoms differ in their electronegativity, the bonding pair will be closer to the more electronegative atom. That will make a polar covalent bond.

#12

Atoms share electrons with each other to achieve an octet of eight valence electrons (two for hydrogen.) Atoms form a covalent bond for every two valence electrons that they need.

Consider: how many electrons do atoms in each molecule need to gain before achieving an octet?

Fluorine is in group 17 of the new IUPAC periodic table. Each fluorine atom needs 18 - 17 = 1 valence electron to achieve an octet. There are two fluorine atoms in an [tex]\rm F_2[/tex] molecule. These two atoms will need two electrons in total to achieve an octet. They will thus need to form [tex]2/2 = 1[/tex] covalent bond.

Similarly:

Nitrogen is in group 15.Each Nitrogen atom is 18 - 15 = 3 electrons away from an octet.There are two nitrogen atoms in each [tex]\rm N_2[/tex] molecule. The two nitrogen atoms need six more electrons in total and will form [tex]6/2 =3[/tex] covalent bonds.Oxygen is in group 16.Each oxygen atom is 18 - 16 = 2 electrons away from an octet.There are two oxygen atoms in each [tex]\rm O_2[/tex] molecule. The two oxygen atoms need four more electrons in total and will form [tex]4/2 =2[/tex] covalent bonds.Hydrogen is a special case in the "octet" rule.Each hydrogen atom needs one valence electron to attain the electron configuration of the next noble gas element, He. There are two hydrogen atoms in each [tex]\rm H_2[/tex] molecule. The two hydrogen atoms need two more electrons in total and will form [tex]2/2 =1[/tex] covalent bonds.

Answer:

11.  Electrons are shared equally by two atoms.

12. Diatomic nitrogen

Explanation:

An example of  the  the first  bond is the diatomic hydrogen.

There are 5  electrons in the nitrogen atom's outer shell. The 2 nitrogen atoms will each share 3 electrons to form 3 covalent bonds.

A solute crystal is dropped into a solution containing dissolved solute. It falls to the bottom of the beaker and does not dissolve after vigorous stirring. What does this indicate about the solution?

Answers

It is probably super saturated.

Which combination is the best choice to prepare a buffer with a ph of 9.0? which combination is the best choice to prepare a buffer with a of 9.0? nh3; nh4cl (pkb for nh3 is 4.75) hcho2; nacho2 (pka for hcho2 is 3.74) c5h5n; c5h5nhcl (pkb for c5h5n is 8.76) hno2;nano2 (pka for hno2 is 3.33)?

Answers

Answer:

[tex]\boxed{\text{NH$_{3}$; NH$_{4}$Cl}}[/tex]

Explanation:

The best choice to prepare a buffer of pH 9.0 is a conjugate acid/base pair in which the acid has pKₐ = 9.0 ± 1.

Let's examine each of the choices.

A. NH₃/NH₄Cl

For NH₃, = pK_b = 4.75

For NH₄⁺, pKₐ  14.00 - 4.75 = 9.25

B. HCHO₂/NaCHO₂  

For HCHO₂, pKₐ = 3.74

C. C₅H₅N/ C₅H₅NHCl

For C₅H₅N, = pK_b = 8.76

For C₅H₅N⁺, pKₐ  14.00 – 8.76 = 5.21

D. HNO₂/NaNO₂

For HNO₂, pKₐ = 3.33

The only acid with a pKₐ close to 9.0 is the ammonium ion.

The best buffer to prepare a buffer with pH 9.0 is [tex]\boxed{\text{NH$_{3}$; NH$_{4}$Cl}}[/tex]

From the given options, the best combination to prepare a buffer with a PH of 9.0 is given by;

Option 1; NH₃;NH₄Cl

A buffer solution is defined as an aqueous solution that consists of a mixture of a weak acid and its conjugate base or mixture of a weak base and its' conjugate acid.

Now, we want to find the best choice to prepare a buffer of pH 9.0. Thus, let us look at each option;

Option 1; NH₃;NH₄Cl

We are given that pK_b for  NH₃ is 4.75

Thus pKₐ for NH₄ is;

NH₄; pKₐ = 14.00 - 4.75

NH₄; pKₐ = 9.25

Option 2; HCHO₂; NaCHO₂  

We are given that pK_a for HCHO₂ is 3.74

HCHO₂; pKₐ = 3.74

Option 3; C₅H₅N; C₅H₅NHCl

We are given that pK_b for C₅H₅N is 8.76

Thus  

For C₅H₅N, = pK_b = 8.76

Thus, pKₐ for C₅H₅N is;

C₅H₅N; pKₐ = 14.00 – 8.76

C₅H₅N; pKₐ = 5.21

Option 4; HNO₂;NaNO₂

We are given pKₐ for HNO₂ as 3.33

HNO₂; pKₐ = 3.33

Looking at all the pKₐ values, the only acid that has a pKₐ close to 9.0 is NH₄ with a pKₐ of 9.25.

In conclusion, the best combination to prepare a buffer with pH of 9.0 is

NH₃;NH₄Cl

Read more at; https://brainly.com/question/15592723

What causes an electric current in a wire

Answers

An electrical phenomenon is caused by flow of free electrons from one atom to another. The characteristics of current electricity are opposite to those of static electricity. Wires are made up of conductors such as copper or aluminum. ... Current flows from positive to negative and electron flows from negative to positive.

how does carbon dioxide malfunction

Answers

Answer:

if in excess the carbon dioxide is harmful to both the humen and other living things.

Explanation:

in our daily life we exhale carbon dioxide after inhaling oxygen.

but if carbon dioxide is in excess  in atmosphere which is caused by burning fossils may cause changes in weather and climate at large due to aerosol particle emittion which inturn cause damage to o-zone layer causing global warming.which are effect to aquatic life and also to human.

What is the basic building block of matter

Answers

Answer:

Atoms

Explanation:

Atoms are widely believed to be the most fundamental particle of matter and their basic building blocks. When atoms combines together, they form compounds. Molecules are another units of matter that are made up of tiny particles of atoms.

Diamonds are mostly composed of what element?

Answers

Answer:

Diamonds are composed almost entirely of the element carbon, often with some other impurities in them, such as nitrogen (i.e., pure diamonds are entirely carbon). The element carbon comes in three different natural forms, or allotropes: diamond, graphite, and amorphous.

Explanation:

Consider the titration curve below


If an Erlenmeyer flask that is used in this titration contains 40.0 mL of 0.10 M HCl, how many moles of hydrogen ions are present at the point that is labeled A on the graph?
OPTION A) 0.0025
OPTION B) 0.0040
OPTION C) 40.0
OPTION D) 4000

Answers

i think A because .10 divided by 40 would be .0025

Answer:

0.0040

Explanation:

Any reaction that absorbs 150 kcal of energy can be classified as ________.
a. endothermic
b. exothermic
c. activated
d. reduction
e. oxidation

Answers

Answer:

a. endothermic

Explanation:

Endothermic reaction: is a chemical reaction that absorbs heat or energy through the reaction.

While, exothermic reaction: is a chemical reaction that releases energy through light or heat. It is the opposite of an endothermic reaction.

So, Any reaction that absorbs 150 kcal of energy can be classified as a. endothermic.

What happens to a reaction at equilibrium when more reactant is added to the system?

Answers

Answer:

When more reactant is added to a system at equllibrium more product is produced.

Explanation:

Provided all other conditons remain constant (e.g. volume and temperature), the addition of more reactant means the increase of the concentration of the reactant, and so, at constant temperature, more product must be produced to compensate such addition of more reactant.

An equlibrium reaction may be represented by the general expression:

aA + bB ⇄ cC + dD

And the equilibrium constant is given by:

[tex]Keq=\frac{[C]^c.[D]^d}{[A]^a.[B]^b}[/tex]

Thus, since at constant temperature Kea is constant, the increase of a reactant concentration (A or B are in the denominator) means that the concentration of the products (C and D in the numerator) must increase.

Since, the molecular point of view what happens is that the increase of the concentration of reactions increase the rate of the direct (forward) reaction yielding to the production of more products.

Final answer:

Adding more reactant to a reaction at equilibrium causes the system to shift right, increasing the rate of the forward reaction and leading to the formation of more products until a new equilibrium is established, with the equilibrium constant (Kc) remaining unchanged.

Explanation:

When a chemical reaction has reached equilibrium, adding more reactant to the system causes the equilibrium to shift. The concepts behind this phenomenon are encapsulated by Le Châtelier's Principle, which states that if a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change.

In the case where more reactant is added, the equilibrium will shift to the right, meaning that the reaction system will respond by forming more products to relieve the stress caused by the added reactant. This increase in reactant concentration results in a temporary increase in the rate of the forward reaction compared to the reverse reaction, leading to a consumption of the added reactant and an increase in product concentration until a new equilibrium is established.

After the system readjusts, the reaction quotient (Qc) will once again equal the equilibrium constant (Kc), which remains unchanged as it is only affected by temperature. This adjustment process continues until the rate of the forward reaction and the rate of the reverse reaction are equal again. In essence, by adding more of a reactant, one can temporarily push the reaction to produce more products, a strategy often used in industrial processes to increase yield.

Which best describes nuclear fission?

Answers

Are there choices to pick from?

if you have 10 grams of a substance that decays with a half life of 14 days then how much will you have after 70 days?

Answers

Answer: If it has a 1/2 life of 14 days, after 14 days there will be half of it left correct?  

Explanation:So, how many half-lifes are in 42 days?  

42 / 14 = 3  

This means it will divide 3 times.  

1st half life period: 10 / 2 = 5g  

2nd period: 5 / 2 = 2.5g  

3rd period: 2.5 / 2 = 1.25g

10 g at start, 5 g at 14 days, 2.5 g at 28 days, 1.25 g at 42 days.

Answer: The amount of substance left will be 0.316 grams.

Explanation:

All the decay processes follow first order kinetics.

The equation used to calculate half life for first order kinetics:

[tex]t_{1/2}=\frac{0.693}{k}[/tex]

where,

[tex]t_{1/2}[/tex] = half life of the reaction = 14 days

k = ?

Putting values in above equation, we get:

[tex]k=\frac{0.693}{14days}=0.0495days^{-1}[/tex]

Rate law expression for first order kinetics is given by the equation:

[tex]t=\frac{2.303}{k}\log\frac{a}{y}[/tex]

where,

k = rate constant  = [tex]0.0495days^{-1}[/tex]

t = time taken for decay process = 70 days

a = initial amount of the reactant  = 10 grams

y = amount left after decay process  = ? grams

Putting values in above equation, we get:

[tex]70days=\frac{2.303}{0.0495days^{-1}}\log\frac{10g}{y}\\\\y=0.316g[/tex]

Hence, the amount of substance left will be 0.316 grams.

You are running a lemonade stand with your friend. You prepared 10 liters of 0.7 molarity lemonade, but your friend did online research and found that people prefer 0.4 Molarity lemonade. How can you fix the lemonade you made so that it is 0.4 Molarity without starting over?

Answers

Answer:

add 7.5L of water

Explanation:

M1×V1=M2×V2

M is molarity, V is volume

0.7 × 10 = 0.4 × V2

V2= 17.5L

vol. of water to add= 17.5 - 10 = 7.5L

The volume which is required to prepare 0.4M lemonade is 17.5L.

How do we calculate the required volume?

Required volume of the solution will be calculated by using the below equation as:

M₁V₁ = M₂V₂, where

M₁ & V₁ are the molarity and volume of initial lemonade.

M₂ & V₂ are the molarity and volume of final prepared lemonade.

On putting all values from the question, we get

V₂ = (0.7)(10) / (0.4) = 17.5 L

Hence required volume of final lemonade is 17.5 L.

To know more about molarity & volume, visit the below link:

https://brainly.com/question/15226282

#SPJ2

The combustion of ________ has added great quantities of carbon dioxide to the atmosphere.

Answers

Answer:

fossil fuel combustion

Explanation:

Fossil fuel is the source of energy that drives almost all industrial processes on the surface of earth. Burning of these fuels releases energy for use in automobiles, industries, homes e.t.c. The complete combustion of these fuels in the presence of oxygen liberates carbon-dioxide and water with heat energy.

Fossil fuels are to a large extent hydrocarbon compounds and their derivatives. They form from organisms million of years ago. When organic matter is prevented from decay in an oxic or oxygen rich environment, they are able to conserve and preserve the energy in them for a vast duration in geologic time. This preserved energy is what becomes available during combustion.

Some of the fossil fuels are oil, natural gas, coal, e.t.c.

Base your answer to this question on the information below.During a bread-making process, glucose is converted to ethanol and carbon dioxide, causing the bread dough to rise. Zymase, an enzyme produced by yeast, is a catalyst needed for this reaction.Choose the correct structural formula for the alcohol formed in this reaction.

Answers

Answer: 1 C6H12O6===> 2 C2H5OH + 2 CO2

75 In the space in your answer booklet, draw a structural formula for the alcohol formed in this reaction. [1]

Explanation:

The correct structural formula for the alcohol formed in this reaction [tex]CH_3-CH_2-OH[/tex] is also called ethanol.

What is alcohol?

Alcohol is any of a class of organic compounds characterized by one or more hydroxyl (―OH) groups attached to a carbon atom of an alkyl group (hydrocarbon chain).

Ethanol is simple alcohol produced via the fermentation of sugars (such as glucose, fructose, and sucrose) by yeasts because yeasts do this conversion in the absence of oxygen.

The correct structural formula for the alcohol formed in this reaction [tex]CH_3-CH_2-OH[/tex] is also called ethanol.

Learn more about the alcohol here:

https://brainly.com/question/4698220

#SPJ2

The reaction depicted in the figure would take place in which of the following?

Answers

Answer: Option (a) is the correct answer.

Explanation:

Nuclear fission is defined as a reaction in which a heavy nucleus splits into two or more small nuclei along with emission of energy.

For example, [tex]^{235}_{92}U + ^{1}_{0}n \rightarrow ^{139}_{56}Ba + ^{95}_{36}Kr + 3^{1}_{0}n[/tex]

So, the given diagram shows a large nucleus is splitting into two small nuclei. Therefore, it is a nuclear fission reaction.

Whereas a nuclear reaction in which two small nuclei combine together to result into the formation of a large nucleus is known as a nuclear fusion reaction.

Thus, we can conclude that the reaction depicted in the figure would take place in fission reactor.

If aluminum is the limiting reactant, SOME/NONE/ALL of it will still be visible after the reaction completes. If CuCl2 is the limiting reactant,SOME/NONE/ALL of the aluminum will still be visible.

Answers

Answer:

If aluminum is the limiting reactant, NONE of it will still be visible after the reaction completes.

If CuCl2 is the limiting reactant, SOME of the aluminum will still be visible.

Explanation:

Any chemical reaction, if the reactants are not in equimolar ratios, contains limiting reactant and leftover reactant.The limiting reactant in a chemical reaction is the reactant that is totally consumed when the chemical reaction is complete. The amount of product formed is limited by this reagent, since the reaction cannot continue without it.The leftover reactant is the reactant that is in excess and not consumed completely and some of it remains in the reaction mixture.

So,

If aluminum is the limiting reactant, NONE of it will still be visible after the reaction completes.

and,

If CuCl2 is the limiting reactant, SOME of the aluminum will still be visible.

Answer:

If aluminum is the limiting reactant, none of it will still be visible after the reaction completes.

If CuCl2 is the limiting reactant,  some of the aluminum will still be visible.

Hydrochloric acid is a strong acid that is diprotic. True or false?

Answers

Answer:

False.

Correction: Hydrochloric acid is a strong acid that is monoprotic.

Explanation:

Hydrochloric acid is a strong acid because it is completely dissociated to its ions in the solution.But it is a monoprotic acid because it produces 1 mol of H⁺ when it is dissociated. according to the reaction:

HCl → H⁺ + Cl⁻.

So, the answer is: False.

And the correction is:

Hydrochloric acid is a strong acid that is monoprotic.

Which of the following is an example of inertia?
An asteroid flying through the vacuum of space
A bullet striking a hard surface
A plane taking off from the runway
Catching a softball in a catcher's mitt

Answers

An asteroid flying through the vacuum of space is an example of inertia where it maintains its motion due to the absence of external forces except gravity. Other examples involving bullets, planes, and softballs are influenced by external forces and hence do not demonstrate inertia in its pure form.

Inertia and Its Examples

Inertia is the resistance of any physical object to a change in its velocity. This includes changes to the object's speed, or direction of motion. An object that isn't influenced by anything other than gravity is considered to be in an inertial frame of reference.

An example of inertia is an asteroid flying through the vacuum of space. This is because the asteroid will maintain its state of motion - traveling at a constant velocity - until acted upon by an outside force, such as another object's gravity. It fits the definition of an inertial frame as it is not being affected by any external forces except gravity, which doesn't change its velocity (considering the incredibly vast distances in space where gravitational influences are relatively minor).

In contrast, a bullet striking a hard surface, a plane taking off from the runway, and catching a softball in a catcher's mitt are all examples where external forces act on the objects, thereby affecting their motions and not illustrating a pure state of inertia.

A bullet striking a hard surface is an example of an object encountering a force that rapidly decelerates it.

A plane taking off is being propelled by the force generated by its engines.

Catching a softball involves an external force applied by the catcher's mitt to stop the ball.

In the electrolysis of brine, the substances produced at the cathode are _____.




oxygen gas and hydroxide ions




sodium metal and hydrogen gas




chlorine gas and hydrogen gas




hydrogen gas and hydroxide ions

Answers

Answer:

In the electrolysis of brine, the substances produced at the cathode are sodium metal and hydrogen gas.

Explanation:

In the electrolysis of brine (Sodium chloride solution) using carbon as electrode, Chlorine gas is produced in the positive electrode (anode), while hydrogen gas is produced in the negative electrode (cathode).

Again, in the electrolysis of molten sodium chloride, chlorine gas is produced in anode, while sodium metal is produced in the cathode.

Nacl ⇄ Na⁺ + Cl⁻

Case 1: Molten Nacl

Anode(+ve) Product                              |    Cathode (-ve) product  

Cl⁻ -----> Cl + e⁻                                      |   Na⁺ + e⁻ ---------> Na

Cl + Cl ------> Cl₂

   

Case 2: Nacl solution

Anode(+ve) Product                              |    Cathode (-ve) Product

Cl⁻ -----> Cl + e⁻                                      |   H⁺ + e⁻ ---------> H

Cl + Cl ------> Cl₂                                     |   H + H ------------> H₂

Thus, cathodic products of electrolysis of brine are sodium metal and hydrogen gas                                

What do acidic solutions have high concentrations of?

Answers

Answer:

Hydrogen ions

Explanation:

Final answer:

Acidic solutions have high concentrations of hydronium ions and a lower concentration of hydroxide ions. The concentration of hydronium ions determines the acidity of the solution.

Explanation:

Acidic solutions have high concentrations of hydronium ions (H+) and a proportionally lower concentration of hydroxide ions (OH-). This is due to the ionization of the acid, which releases H+ ions into the solution. The concentration of hydronium ions is a critical determinant of the solution's acidity.

Learn more about Acidity of solutions here:

https://brainly.com/question/28982585

#SPJ12

Which of the following conditions remain constant in Gay-Lussac's law? Temperature and number of moles Volume and number of moles Density and temperature Volume and pressure

Answers

Answer:

Volume and number of moles.

Explanation:

Gay-Lussac's law was found by Joseph Louis Gay-Lussac in 1808. It states that, for a given mass (no. of moles) and constant volume of an ideal gas, the pressure exerted on the sides of its container is directly proportional to its absolute temperature.

So, no. of moles and V are constant.

P ∝ T,

∴ P1/T1 = P2/T2.

So, the right choice is: Volume and number of moles.

Answer:

Volume and Number of Moles

Explanation:

I hope this helps !! :)

What happens to a glucose molecule when it loses a hydrogen atom as the result of an oxidation-reduction reaction?

Answers

Answer:  oxidized

Explanation:

When a glucose molecule loses a hydrogen atom as the result of an oxidation-reduction reaction, the molecule becomes

oxidized.

Good luck! and sorry if is not the answer ur looking 4!

Answer:

The glucose molecule is oxidized

Explanation:

When glucose loses a hydrogen atom it is losing 1 proton and 1 electron. As it is losing an electron, the glucose is oxidized.

Which of the following equations is balanced correctly and has the correct products for the reactants RbNO3 and BeF2?3RbNO3 + 3BeF2 → Be(NO3)3 + 3RbF, because Be increases in charge from 2+ to 3+ when it is replaced2RbNO3 + BeF2 → Be(NO3)2 + 2RbF, because Be keeps a 2+ charge throughout the reactionRbNO3 + BeF2 → BeNO3 + RbF2, because Be keeps a 1+ charge throughout the reaction2RbNO3 + BeF2 → Be(NO3)2 + 2RbF, because Be increases in charge from 1+ to 2+ when it is replaced

Answers

Answer:

2RbNO₃ + BeF₂ → Be(NO₃)₂ + 2RbF, because Be keeps a 2+ charge throughout the reaction.

Explanation:

It is a double replacement reaction.A double replacement reaction is a type of chemical reaction where two compounds react, and the positive ions (cation) and the negative ions (anion) of the two reactants switch places, forming two new compounds or products.In this reaction, there is no change in the oxidation state of different atoms.It is just a replacement reaction.

So, the right choice is:

2RbNO₃ + BeF₂ → Be(NO₃)₂ + 2RbF, because Be keeps a 2+ charge throughout the reaction.

Answer:

b

Explanation:

A solution is made by mixing equal masses of methanol,
CH4O, and ethanol, C2H6O. How would you determine the mole fraction of each component to at least three significant figures?

Answers

Answer:

   Mole fraction of methanol: 0.590    Mole fraction of ethanol: 0.410

Explanation:

1) Definition of mole fraction: number of moles of a component / number of moles total number of moles.

2) The number of moles of each component is determined from the respective molar mass. Using the letter n for the number of moles of a component:  

n = mass in grams / molar mass.

3)      CH₄O

n₁ = mass CH₄O / molar mass CH₄O

        Molar mass CH₄O = 32.04 g/mol

        n₁ = mass CH₄O / 32.04 g/mol

4)  C₂H₆O

n₂ = mass of C₂H₆O / molar mass of C₂H₆O

        Molar mass C₂H₆O = 46.07 g/mol

        n₂ = C₂H₆O = mass of C₂H₆O / 46.07 g/mol

5) Both masses are equal; call them m.

   n₁ = m / 32.04    n₂ = m / 46.07    n₁ + n₂ = m / 32.04 + m / 46.07

6) Mole fraction of CH₄O:

Use the letter X for mole fraction.

X₁ =  n₁ / [n₁ + n₂] = [ m / 32.04 ] / [ m / 32.04 + m / 46.07]

Cancel the common factor m:

        X₁ =  [ 1 / 32.04] / [1 / 32.04 + 1 /46.07] = 0.590

7) Mole fraction of C₂H₆O

X₁ + X₂ = 1 ⇒ X₂ = 1 - X₁= 1 - 0.590 = 0.410

The mole fractions are rounded to three significant figures.

The health of bones depends upon a good supply of calcium. If a person consumes 0.06 g of calcium, how many moles of calcium did he consume? A. 6.6 x 102 mol B. 7.5 x 10-2 mol C. 2.4x 101 mol D. 1.5 x 10-3 mol

Answers

Answer:

[tex]\boxed{\text{D. }1.5 \times 10^{-3}\text{ mol}}[/tex]

Explanation:

1 mol of Ca = 40.08 g

[tex]\text{Moles of Ca = 0.06 g Ca} \times \dfrac{\text{1 mol Ca}}{\text{40.08 g Ca}} = 1.5 \times 10^{-3}\text{ mol Ca}\\\\\text{The person consumed }\boxed{1.5 \times 10^{-3}\text{ mol Ca}}[/tex]

Final answer:

By dividing the mass of calcium consumed (0.06 g) by its molar mass (40.08 g/mol), we calculate that the individual consumed 1.5 x 10⁻³ moles of calcium, corresponding to option D.

Explanation:

The health of bones is strongly tied to adequate calcium intake, which is crucial during periods of bone growth and density increase, such as adolescence. To calculate the number of moles of calcium consumed when a person ingests 0.06 g, we need to use the molar mass of calcium. The molar mass of calcium is approximately 40.08 g/mol.

To find the number of moles (n), we use the formula:

n = mass (g) / Molar mass (g/mol)

For calcium:

n = 0.06 g / 40.08 g/mol = 1.5 x 10⁻³ moles

Therefore, the person consumed 1.5 x 10⁻³ moles of calcium, which corresponds to option D.

How many valence electrons does an iodine atom have

Answers

Answer:

An iodine atom has 7 valence electrons.

Explanation:

Iodine is a halogen so it is the group (column number) 17 of the periodic table. It is a representative element.

The number of valence electrons for the representative elements is equal to the second digit of the group number. So, group 17 means that iodince has 7 valence electrons.

Now, more formally, the valence electrons are the electrons in the outermost shell of the atom and you can determine how many of them an atom has by doing the electron configuration.

These are the steps:

Atomic number, of iodine, Z = 53

Number of electrons of the neutral atom = number of protons = 53

Distribute the electrons in ascending order of orbital energies, following Aufbau's rules:

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁵

If you count the electrons you must obtain 53: 2 + 2 +6 + 2 + 6 + 2 + 10 + 6 + 2 + 10 + 5 = 53.

The valence electrons are those in the highest principal energy level: 5s² 5p⁵, i.e 2 + 5 = 7.

An iodine atom has seven valence electrons and generally gains one electron to become a negatively charged iodide ion (I-). Iodine is in the 17th group of the periodic table and prefers to achieve a full octet by accepting an additional electron rather than losing seven electrons.

An iodine atom has seven valence electrons. When looking to achieve a stable electronic configuration, iodine typically gains one electron to complete its octet because it is more energetically favorable than losing seven electrons. When an iodine atom gains an electron, it forms a negatively charged ion known as an iodide ion (I-). The formula of the resulting ion is I-.

The atomic number of iodine (53) reveals that a neutral atom of iodine consists of 53 protons and an equal number of electrons. Iodine is a halogen and is part of the 17th group in the periodic table which is characteristic of elements with seven valence electrons. According to the octet rule, atoms tend to bond in such a way that they each end up with eight valence electrons; gaining one electron is the preferred pathway for iodine.

The concept of a hypervalent structure involves molecules that contain more than eight electrons in their valence shell. However, in the case of the triiodide ion, resonance structures without violating the octet rule offer a more accurate representation of the bonding. As iodine tends to form weak bonds, the I2 molecule can dissociate into atomic iodine at a relatively lower energy compared to lighter halogens.

What is the oxidation state for a mn atom?

Answers

Final answer:

The oxidation state of a Mn atom in its elemental state is zero. However, in compounds, Mn has multiple potential oxidation states depending on the number of electrons it has lost.

Explanation:

The oxidation state of an atom is typically zero when it is in its elemental state. In the case of a manganese (Mn) atom, this rule applies: the manganese atom has an oxidation state of zero.

However, this can change under certain conditions. For instance, in a chemical reaction, the oxidation state of Mn can vary. Transition metals like Mn usually have multiple oxidation states due to their ability to lose different numbers of d or s orbital electrons.

For example, in a compound such as MnO2, the oxidation state of Mn is +4. Here, Mn has lost four electrons. In another compound such as Mn2+, Mn has lost two electrons, giving it an oxidation state of +2.

Learn more about Oxidation State here:

https://brainly.com/question/31688257

#SPJ12

Final answer:

The oxidation state of Mn in the permanganate ion (MnO₄) is +7. This is calculated using the known oxidation state of oxygen (-2) and balancing it with the overall charge of the permanganate ion (-1).

Explanation:

The oxidation state of manganese (Mn) varies depending on the compound it is in. For instance, in the permanganate ion (MnO₄), the oxidation state of Mn is determined using the known oxidation state of oxygen, which is -2. Since there are four oxygen atoms, their combined oxidation state is -8. The permanganate ion itself carries an overall charge of -1, so when adding up the oxidation states of all atoms in the ion, their sum must equal this charge.

The calculation is as follows: Mn + (-2) × 4 = -1, which simplifies to Mn - 8 = -1. Solving for Mn gives us an oxidation state of +7. Therefore, in MnO₄, manganese has an oxidation state of +7. This demonstrates that manganese can have a high oxidation state and act as a strong oxidizing agent.

In other compounds, such as MnO₂ or Mn₂O₇, Mn may have different oxidation states, such as +4 or +7, respectively. The principle is to always include the charge on the atom, and balance the oxidation states with the overall charge of the compound or ion.

The chart shows the path reactants take to become products. Which statement best describes the chart? A. Heat was removed from the activation energy to create the product. B. Heat was added to create the product. C. The products have less energy than the reactants. D. The products have the same energy as the reactants.

Answers

Answer:

B

Explanation:

The final position of the curve is higher than the original height of the curve, meaning the products have more energy than the reactants.

Hence energy was added for the reactants to become the products.  This is why the reaction is endothermic, because the products retained some of the supplied energy.

Part of the energy supplied was used to overcome the activation energy (the peak of the curve).  However, this extra energy is recuperated as heat once the product is formed.

Answer:

B-

Heat was added to create the product

Explanation:

Just did the quiz on edg

Other Questions
If (-1, y) lies on the graph of y = 3x+1, then y =01/31 Which units are used to express kinetic energy?meterssecondsjoulesnewtons What is instantaneous speciation? HELP ASAP PLEASE!!!Read the excerpt from A Christmas Carol by Charles Dickens and answer the question.On Christmas Eve, the Ghost of Christmas Present brings Scrooge to his underpaid clerk's house on Christmas Day.[1] "God bless us every one!" said Tiny Tim, the last of all.[2] He sat very close to his father's side upon his little stool. Bob held his withered little hand in his, as if he loved the child, and wished to keep him by his side, and dreaded that he might be taken from him.[3] "Spirit," said Scrooge, with an interest he had never felt before, "tell me if Tiny Tim will live."[4] "I see a vacant seat," replied the Ghost, "in the poor chimney-corner, and a crutch without an owner, carefully preserved. If these shadows remain unaltered by the Future, the child will die."[5] "No, no," said Scrooge. "Oh, no, kind Spirit! say he will be spared."[6] "If these shadows remain unaltered by the Future, none other of my race," returned the Ghost, "will find him here. What then? If he be like to die, he had better do it, and decrease the surplus population."[7] Scrooge hung his head to hear his own words quoted by the Spirit, and was overcome with penitence and grief.How does the author use structure to create tension in the excerpt? By flashing back to an earlier time in the main character's life By flashing forward to show what happens in the future By giving background information about the characters and setting By showing the turning point in the conflict and how it's resolved George rented a cab for his family for a day of sightseeing. The cab company charges $9 to pick up his family from the hotel and $0.25 per mile for the trip. If x represents the number of miles and y represents the total amount George pays, select the equation and the graph that correctly model this situation. Based on the graph what conclusion can be drawn about access to computers and the internet in the United States What was the terrorists main goal in committing the September 11, 2001, attacks? A. to get the United States to recognize al-Qaeda as an official governmentB. to kill as many Americans as possible and damage the US economyC. to incite the United States into a holy war against Islamist countriesD. to force the United States to release thousands of its members from prison the amount of water on Earth is _______but the form and location of the water _______ as it moves through the hydrologic cycle Explain how to convert a mass of compound A to a mass of compound D in words with no equations using the following reaction 2A + 4B -> C + 3D 1. In The Tragedy of Romeo and Juliet Act II, what is the main reason that Friar Laurence agrees to perform the marriage of Romeo and Juliet?AHe knows that Prince Escalus would approve of the marriage.BHe prefers that Juliet marry Romeo rather than Paris.CHe thinks the marriage may end the feud between the Capulets and Montagues.DHe realizes they will never give up their love whether or not they get married.2. In The Tragedy of Romeo and Juliet Act II, scene iii, how does Friar Laurence react to Romeos news and plans? Choose two options.AHe urges Romeo to get to know Juliet better before rushing into marriage.BHe is concerned that Romeo may forget Juliet as quickly as he forgot Rosaline.CHe predicts disaster because Romeo and Juliets families are enemies.DHe agrees to perform the marriage of Romeo to Juliet as soon as possible. The measure of a vertex angle of an isosceles triangle is 120 and the length of a leg is 8 cm. Find the length of a diameter of the circle circumscribed about this triangle.Answer in CM, please. Thanks! Mi casa es muy grande y bonita. Hay dos cuartos muy especiales: la sala y la sala familiar. Tambin hay un garaje, un patio y un jardn. En la sala hay dos sofs grandes, tres mesas y dos lmparas. En la sala familiar hay un televisor y dos butacas pequeas. Me gusta ver la televisin en la sala familiar. En el garaje hay una bicicleta roja y una bicicleta negra. En el patio hay una mesa y cuatro sillas y en el jardn hay muchas flores. Me gusta mucho estar en mi casa. Qu hay en el garaje? What is the simplest form of square root 1,764 given the vector v has an initial point (-2,-6) and a terminal point of (1,2) write vector v as a linear combination of the standard unit vector i and j. How does Twain's use of the fable genre affect the story? A.) by using the fable genre in his more modern era, Twain creates humor. B.) the use of the fable genre makes Twains theme easier for readers to accept. C.) by writing the story as a fable, Twain avoids having to make it realistic. D.) the fable genre enables Twain to deal with his personal feelings in a disguised way. The hypotenuse of a right angle triangle measures 12 units. what is the maximum possible area in square units, of the triangle ? Under what conditions will a gas be least likely to exhibit the ideal gas properties predicted by the ideal gas law? What is the solution to he equation (y/y-4)-(4/y+4)=3^2/y^2-16 What was one of the causes of the decline of Rome?a. deflationb. warsc. deficitsd. education Which of the following is a symptom of autism?lack of eye contactrepetitive behaviorsdelayed speechall of these Steam Workshop Downloader