Calculate the moment of inertia of uniform circular disc of mass 500g, radius 10cm about 1.the diameter of the disc. 2. the axis tangent to the disc parallel to its diameter 3.the axis through the center of the disc and perpendicular to its plane

Answers

Answer 1

Mass of the disc is equal to 500 g (m=500 g)

Radius of the disc if equal to 10 cm (r=10 cm)

1.    The diameter of the disc:

D = 1/4 (m) (r)^2

= 1/4 (500) x 10^2 g cm^2

= 12500 g cm^2

2.    The axis tangent to the disc and parallel to its diameter:

= 1/4 (m) (r )^2 + m (r )^2

= 5/4 x 500 x 10^2 g cm^2

= 62500 g cm^2

3.    The axis through the center or the disc and perpendicular to its plane:

= 1/2 (m) (r )^2 – ½ x 500 x 10^2 g cm^2

= 25000 g cm^2

Answer 2
Final answer:

The moment of inertia for the disc about its diameter is 0.0025 kg.m², the moment of inertia about an axis tangent to the disc parallel to its diameter is 0.0075 kg.m², and the moment of inertia about an axis through the center and perpendicular to the disc's plane is 0.005 kg.m².

Explanation:

The moment of inertia (I), a measure of an object's resistance to rotational motion about an axis, varies depending upon the axis of rotation. Various formulae apply for different axes:

About the diameter of the disc: Here, the formula is I = 1/2 ×m ×R², where m is the mass and R is the radius. Substituting the provided values(m = 500g = 0.5kg, R = 10cm = 0.1m), we find that the moment of inertia about the diameter is I = 1/2 ×0.5kg × (0.1m)² = 0.0025 kg.m².The axis tangent to the disc parallel to its diameter: For this case, we would use the parallel axis theorem: I = I_center of mass + m×d². Here, d is the distance from the center of mass to the new axis, which equals the radius (R). Since the moment of inertia about the diameter (I_center of mass) is 0.0025kg.m², the moment of inertia for this axis is I = 0.0025 kg.m² + 0.5kg × (0.1m)² = 0.0075kg.m².The axis through the center of the disc and perpendicular to its plane: Here, the formula is I = m × R². Substituting the given values, we find the moment of inertia is I = 0.5kg × (0.1m)² = 0.005 kg.m².

Learn more about Moment of Inertia here:

https://brainly.com/question/30051108

#SPJ11


Related Questions

What happens to the particles of a gas when the gas turns into a liquid?
A.the particles are melting
B.the particles are boiling
C.the motion of the particles is slowing down
D.the motion of the particles is speeding up

Answers

C. in a liquid, the partivles are compact and move a bit slower than gas

A train travels 120km in 2 hours and 30 minutes what is the average speed

Answers

The answer is:  " 48 [tex] \frac{km}{h} [/tex]" .
______________________________________________
Note:  30 minutes is "1/2 h" = 0.5 h ; 

As such:

"2 hours and 30 minutes:  = 2 h  + 0.5 h = 2.5 h " ; 
______________________________________________
So we have:
____________________
120 km / 2.5 h ;

=  (120 / 2.5)  km / h = (1200/25) km/hr = 48 [tex] \frac{km}{h} [/tex] .
____________________________________________________

A skier with a 65kg mass skies down a 30 degree incline hill. The coefficient of friction is 0.1. a. Draw a free body diagram. b. Determine the normal force. c. Determine the acceleration of the skier down the hill.

Answers

Final answer:

To draw a free body diagram for the skier, identify the forces acting on the skier including the gravitational force, normal force, and frictional force. The normal force can be found by taking the component of the gravitational force perpendicular to the incline. The acceleration of the skier down the hill can be determined using Newton's second law.

Explanation:

To draw a free body diagram for the skier, we need to identify the forces acting on the skier. These include the gravitational force (mg) acting straight down, the normal force (N) perpendicular to the incline, and the frictional force (f) parallel to the incline. The acceleration of the skier down the hill can be determined using Newton's second law, which states that the net force (Fnet) equals the mass (m) times the acceleration (a): Fnet = ma.

The normal force can be found by taking the component of the gravitational force perpendicular to the incline, which is given by N = mg*cos(theta).

The acceleration of the skier down the hill can be determined using the equation Fnet = ma, where the net force is the difference between the gravitational force parallel to the incline and the frictional force: Fnet = mg*sin(theta) - f.

The normal force acting on the skier is approximately 550.32 N.The skier's acceleration down the hill is approximately 3.03 m/s².

Here's how to solve the problem:

a. Free body diagram:

The free body diagram for the skier should show the following forces acting on them:

Weight (mg): This is the force of gravity acting on the skier, directed downwards. Its magnitude is given by `mg`, where `m` is the skier's mass (65 kg) and `g` is the acceleration due to gravity (approximately 9.81 m/s²). In this case, the weight would be `65 kg * 9.81 m/s² ≈ 637.65 N`.

Normal force (N): This is the force exerted by the slope on the skier, perpendicular to the slope. Its magnitude depends on the weight and the angle of the slope.

Friction force (f): This is the force opposing the skier's motion, parallel to the slope. Its magnitude is proportional to the normal force and the coefficient of friction (`μ`).

b. Normal force:

The normal force can be calculated using the component of the weight perpendicular to the slope. This can be done using trigonometry:

N = mg * cos(θ)

where `θ` is the angle of the slope (30° in this case).

Therefore, the normal force would be:

N = 637.65 N * cos(30°) ≈ 550.32 N

c. Acceleration:

The acceleration of the skier can be calculated using Newton's second law of motion:

ΣF = ma

where `ΣF` is the net force acting on the skier, `m` is the skier's mass, and `a` is the acceleration.

The net force is the difference between the downhill component of the weight and the friction force:

ΣF = mg * sin(θ) - μ * N

Substituting the known values:

ΣF = 637.65 N * sin(30°) - 0.1 * 550.32 N ≈ 196.81 N

Finally, solving for the acceleration:

a = ΣF / m = 196.81 N / 65 kg ≈ 3.03 m/s²

Therefore, the skier's acceleration down the hill is approximately 3.03 m/s².

which is true about the velocity of sound waves in solids compared to air

Answers

C. Travels slower in solids because the particles are closer together.

Answer: Third option; "travels slower in solids because particles are close together"

Explanation: While in the air the particles are very freely and the sound does not need to do a lot of work, in a dense material this is not the case. The particles are more close together, and this causes that in a fixed distance, the sound wave needs to move more particles in a solid than in the air. This makes the sound wave to travel slower when it is in a solid.

Will give 15 points.
Name three different kinds of graphs that are often used to plot information and discuss the value of each.

Answers

Bar Graph, Line Graph, and Circle Graph.

The three different kinds of graphs that are often used to plot information are Bar graphs, Pie charts, and Line graphs.

What is a graph?

A graph is a way to represent a lot of data in such a visual format that it is easy for the user to understand the complete information in one go. Usually, the line of the graph is a function that follows the graph.

The three different kinds of graphs that are often used to plot information are,

Bar graphs: It is used to display numbers that are unrelated to one another. Data examples may include the number of persons who liked Chinese takeaways, Indian takeaways, and fish & chips.

Pie charts: These are used to demonstrate how a whole is split into separate portions. For example, You could wish to display how a budget was spent on various items in a given year.

Line graphs: Line graphs demonstrate how data has evolved throughout time. They are used when you have linked data and want to display patterns, such as the average night-time temperature in each month of the year.

Hence, the three different kinds of graphs that are often used to plot information are Bar graphs, Pie charts, and Line graphs.

Learn more about Graph here:

https://brainly.com/question/21608293

#SPJ2

The difference in ________ of p and s waves provides a method for determining the epicenter of an earthquake.

Answers

velocities is the answer

Question 4 of 20 : Select the best answer for the question. 4.   Which of the following would lower the pitch of a string instrument's sound?        A. shortening the effective string length.   B. increasing the thickness of the string used.   C. adding tension within the string.   D. using less force to vibrate the string

Answers

The correct option is B.
There are four basic factors which affect the properties of stringed instruments, these are frequency, diameter [thickness], tension and density.
Diameter refers to the thickness of the string. Thick strings with large diameter vibrate slower and thus they have lower frequency and lower pitch compared with thin strings.

Can you please help me with #9?

Answers

The answer is 1 m/s. :::))))

Salt is dissolved in a flask of tap water. Distilling the mixture causes the salt to separate from the water. Which type of energy is required to begin the distilling process?

Answers

Final answer:

Thermal energy is required to initiate the distillation process, which separates salt from water by heating the mixture until the water boils and evaporates.

Explanation:

The type of energy required to begin the distilling process for separating salt from water is thermal energy. To start distilling the mixture, you would typically use a heating source, like a Bunsen burner, to provide enough energy to bring the water to its boiling point. During the distillation process, the heat causes the water to evaporate, leaving the salt behind. The vapor then condenses back to liquid form when it comes into contact with a cool surface, and it is collected separately as distilled water while the salt remains in the distillation flask.

Final answer:

The type of energy required to begin the distilling process is heat energy. Distillation involves boiling a liquid and then condensing the resulting vapor to collect the liquid elsewhere. In the case of salt dissolved in water, heating the flask causes the water to boil and separate from the salt.

Explanation:

The type of energy that is required to begin the distilling process is heat energy.

Distillation is a process that involves boiling a liquid and then condensing the resulting vapor to collect the liquid elsewhere. In the case of salt dissolved in water, heating the flask causes the water to boil and the vapors to travel to a cool surface where they condense, leaving behind the solid salt. This process requires the input of heat energy to raise the temperature of the water to its boiling point and initiate the distillation.

For example, if a Bunsen burner is used to heat the flask, initially heating the flask at a rapid rate is required to reach the boiling point of the water. Once boiling or foaming occurs, the burner can be turned down or waved to moderate the distillation rate.

Isaac Newton’s investigations of gravity explained which truth?

A.Earth is not the center of the universe.

B.Jupiter has more moons than Earth.

C.Gravity acts on all objects in the universe.

D.The sun is more massive than Earth.

Answers

C. Gravity acts on all objects in the universe! 

Answer:

c gravity acts on all objects in the universe

Explanation:

A substance has a volume of 10.0 cm3 and a mass of 89 grams. What is its density?

0.11 g/cm3
8.9 g/cm3
99 g/cm3
79 g/cm3

Answers

Answer : Density of the substance is [tex]8.9\ g/cm^3[/tex]              

Explanation :

The volume of the substance, [tex]V=10\ cm^3[/tex]

Mass of the substance, [tex]M=89\ g[/tex]

The density of a substance is defined as the mass per unit volume.

[tex]\rho=\dfrac{m}{V}[/tex]  

[tex]\rho=\dfrac{89\ g}{10\ cm^3}[/tex]

[tex]\rho=8.9\ g/cm^3[/tex]            

So, the correct option is (b).

Hence, this is the required solution.              

An object has 60 j of potential energy and 40 j of kinetic energy. then 10 j of the potential energy is converted into kinetic energy. how much work was done on the object?

Answers

It will be 50 J because if he worked on 40 J already then he converted 10 j to ke Eric energy making it 50:50. So he work on 50% already and needs to complete the rest of the 50%.

Answer:

work done on the object will be 10 J

Explanation:

As we know by work energy theorem that work done by all the forces is equal to change in kinetic energy

It is given as

[tex]K_f - K_i = W[/tex]

here we know that

[tex]K_i = 40 J[/tex]

now its 10 J of potential energy is converted into kinetic energy

Which means the kinetic energy finally becomes

[tex]K_f = 40 + 10 = 50 J[/tex]

now by above equation we know that

[tex]W = K_f - K_i[/tex]

[tex]W = 50 - 40 = 10 J[/tex]

so work done on the object will be 10 J

A cannonball fired with an initial speed of 40 m/s and a launch angle of 30 degrees from a cliff that is 25m tall.

a) What is the flight time of the cannonball?
b) What is the range of the cannonball

I have the answers i just dont know how to get there

Answers

We know that the ball traveled with an initial velocity of 40m/s at a 30° angle above the horizontal. The image below shows how much of this velocity was upward velocity and how much was horizontal velocity. Upward velocity was 20 m/s and horizontal velocity was √(40) m/s, or 2√(10) m/s. We get these numbers from the ratios of the 30-60-90 triangle. 

a) What is the flight time of the cannonball?
The flight time of the cannonball can be found by finding the time at which the upward velocity equals zero (the top of the ball's trajectory) and then finding how long it took to hit the ground after that point.

To find where upward velocity equals zero:
V = Vi - a(t) ,  where V equals vertical velocity, Vi equals initial vertical velocity, and a equals acceleration due to gravity (-9.8 m/s²)
V = 20 - 9.8(t)          Set V equal to zero, because we want to find the moment when the ball reached the peak of its travel path
0 = 20 -9.8t         Add 20 to both sides, then divide by 9.8
t = 2.041
This is the point where the ball was at the top of its trajectory.

At this point, How high was the ball?
d = Vi x t + (1/2) (a) (t²) , where d is distance traveled
d = 20(2.041) + (1/2) (-9.8) (2.041²)
d = 20.388
Remember that the ball was launched from 25 m above the ground, so add 25 to the height that the ball traveled from this point:
25 + 20.388 = 45.388
This was the height the ball reached before it started to come down. Plug this into the distance formula to see how long it took to hit the ground. Remember that this is similar to the ball being dropped from rest from this height, since vertical velocity was zero.
45.388 = (0)(t) - (1/2) (-9.8) (t²)    Multiply both sides by (-2/-9.8)
9.26 = t²
t = 3.043
We know that it took 2.041 seconds to reach the peak height, and 3.043 seconds to come down. 
Total flight time = 2.041 + 3.043 = 5.084 seconds

Remember that, neglecting air resistance, the ball will maintain the same horizontal velocity the entire time. This means the horizontal velocity was 10√2 during the entire flight time.
distance = velocity * time = 5.084 * 10√2 = 32.154
Final answer:

To solve this Physics problem, the equations of projectile motion were utilized. The flight time was calculated to be 2.27 seconds and the range was found to be 78.4 meters.

Explanation:

The subject of your question falls under projectile motion in Physics. If a cannonball is fired with an initial speed of 40 m/s at a launch angle of 30° from a cliff that's 25m tall, it has both horizontal and vertical components of motion.

Flight Time: From physics, we know that when an object is in free fall, its flight time (t) can be found using the equation t = sqrt((2h)/g), where h is the initial height and g is the acceleration due to gravity (approximated to 9.8 m/s^2). So, for this problem, t = sqrt((2*25)/9.8) = 2.27 seconds.Range: The range (R) can be found using the equation R = v * t * cos(θ), where v is the initial speed, t is the flight time, and θ is the angle of launch. So for this problem, R = 40 * 2.27 * cos(30) = 78.4 m.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ11

The ___________ of a black hole is the radius from a black hole at which the escape velocity is approximately equal to the speed of light.

Answers

The Photon Sphere is the radius  of the orbit.

What are the four steps in the machine cycle?

Answers

machine cycle. The four steps which the CPU carries out for each machine language instruction: fetch, decode, execute, and store. hope that helped

Final answer:

The four steps in the machine cycle of a four-stroke gasoline engine are Intake, Compression, Combustion (Power), and Exhaust, often termed the Otto cycle.

Explanation:

Steps in the Machine Cycle:

The four steps in the machine cycle for a common four-stroke gasoline engine are Intake, Compression, Combustion (Power), and Exhaust. During the Intake step, a mixture of gasoline and air is drawn into the engine's combustion chamber. Next is the Compression step, where the piston compresses the mixture, increasing its temperature. The Combustion (Power) step follows, which ignites the compressed mixture, causing a rapid expansion of gases that push the piston. Lastly, the Exhaust step releases the combustion gases from the chamber. This process is often referred to as the Otto cycle and is central to the operation of many internal combustion engines.

If you wanted to learn more about about the experiences of an African American pioneer in a scientific field, whose life would you research?

Answers

To learn more about the experiences of an African American pioneer in a scientific field, researching figures like Dr. Percy Julian, a chemist, or Dr. Charles Drew, a medical researcher, would be insightful. Additionally, delving into 19th-century African American inventors and the legacy of African American women journalists can broaden one's understanding of the impacts made by these trailblazers in their respective fields.

If you are interested in learning more about the experiences of an African American pioneer in a scientific field, one impactful individual to research would be Dr. Percy Julian. He was a chemist who made significant contributions to the synthesis of medical drugs such as cortisone, steroids, and birth control pills. Moreover, you might want to explore the work of Dr. Charles Drew, a surgeon and medical researcher who developed improved techniques for blood storage and established large-scale blood banks early in World War II, saving countless lives.

Looking into the contributions of African American inventors of the 19th century can provide insight into the enduring impacts of their innovations on today's society. Furthermore, understanding how pioneering African American women journalists have opened opportunities for diverse voices in media can offer a broader perspective on the intersection of race, gender, and professional progress in the field of journalism.

Delving into Black history, one realizes its significance in identifying overlooked figures who have shaped our present. This could involve investigating individuals who played key roles in impactful events, like the psychologists whose research influenced the Brown v. Board of Education civil rights case. Identifying such individuals not only honors their contributions but also fosters a more inclusive understanding of history's narrative.

One of the leading causes of permanent damage leading to hearing impairment is _____.
fluid in the ears
middle ear infections
loud noise that damages hair cells
swelling in the ear canal

Answers

C. Loud Noise that damages hair cells

Hope this helps :)
One of the leading causes of permanent damage leading to hearing impairment is loud noise that damages hair cells because when people say turn that noise down its not because they don't want to hear but because for your safety, if music is too loud against your eardrum than it can be damaged and u can lose your hearing, so its important to NOT have music up so loud, it hurts u on the inside and has devastating results. *I take no credit for the image below I just found it off google.

Which of the following most accurately represents John Dalton’s model of the atom? A. a tiny, solid sphere with an unpredictable mass for a given element B. a hollow sphere with a dense nucleus C. a tiny, solid sphere with a predictable mass for a given element D. a sphere that is hollow throughout Reset Selection

Answers

A and c are the answersss

Which of the following correctly describes the appearance of muscle tissue used to voluntarily raise a person's arm?

A) Single-nucleus, non-striated, short cells
B) Single-nucleus, striated, branching cells
C) Multinucleated, non-striated, branching cells
D) Multinucleated, striated, long threadlike cells

Answers

d because a muscle need to use multiple tissues and you strain the muscle when you raise the arm 

A school bus takes 20 minutes to reach school from your house. if the average velocity of the bus is 15.0 km/h to the west, the displacement from your house is:

Answers

Answer:

5.0 km west

Explanation:

Velocity is the ratio between displacement and time taken for the motion:

[tex]v=\frac{d}{t}[/tex]

where d is the displacement and t the time taken.

In this problem, we know:

- velocity: [tex]v= 15.0 km/h[/tex]

- time taken: [tex]t=20 min=\frac{1}{3}h[/tex]

So, we can re-arrange the formula to calculate the displacement:

[tex]d=vt=(15.0 km/h)(\frac{1}{3}h)=5.0 km[/tex]

and the displacement has the same direction of the velocity (to the west)

A child carries a 3N book at a constant velocity 4 meters across a horizontal floor. What is the net work done?

Answers

Note that 4  m (meters) has the units of distance, not velocity.

By definition,
Work = Force x Distance
Therefore if a 3 N book is carried over a distance of 4 m, the work done is
3 *3 4 = 12 J

Answer:  12 J

Check my Physics question's answer ASAP please?

You measure the mass of a 0.500 kg (500 g) standard on your balance four times. the following measurements result: 498 g, 501 g, 499 g, 500. Which of the following best describes your balance?

1) precise and accurate <--- I think it is this one?
2) not precise and not accurate
3) precise but not accurate
4) not precise but accurate

Answers

Final answer:

The balance is both precise and accurate, as the measurements of 498 g, 501 g, 499 g, and 500 g are all close to the true value of 500 g, and the variations are minor, indicating consistency and correctness.

Explanation:

When assessing the performance of your balance through multiple measurements, two concepts are of utmost importance: precision and accuracy. Precision refers to the consistency of repeated measurements, while accuracy refers to how close those measurements are to the true or accepted value.

In your case, the measurements on the balance were 498 g, 501 g, 499 g, and 500 g. Since the true mass of the standard is 500 g and your measurements are all very close to this value, your balance is both precise and accurate. The minor variations in measurement are within a reasonable range, suggesting that the balance repeatedly gives results very close to the true mass.

Therefore, the best description for your balance is option 1): precise and accurate. Your initial instinct was correct, as these results show a tight grouping around the true value (precision) and the true value itself is within the range of the measurements (accuracy).

Learn more about Precision and Accuracy

https://brainly.com/question/5863609

#SPJ12

A mug rests on an inclined surface, as shown in (Figure 1) , θ=17∘.
What is the magnitude of the frictional force exerted on the mug?
What is the minimum coefficient of static friction required to keep the mug from sliding?

Answers

The minimum coefficient of static friction required to keep the mug from sliding is 0.31

Further explanation

Acceleration is rate of change of velocity.

[tex]\large {\boxed {a = \frac{v - u}{t} } }[/tex]

[tex]\large {\boxed {d = \frac{v + u}{2}~t } }[/tex]

a = acceleration (m / s²)v = final velocity (m / s)

u = initial velocity (m / s)

t = time taken (s)

d = distance (m)

Let us now tackle the problem!

This problem is about Newton's Law of Motion.

Given:

θ = 17°

Unknown:

μ = ?

Solution:

[tex]\Sigma Fy = ma[/tex]

[tex]N - w \cos \theta = m (0)[/tex]

[tex]N - w \cos \theta = 0[/tex]

[tex]\boxed {N = w \cos \theta}[/tex] → Equation 1

[tex]\Sigma Fx = ma[/tex]

[tex]w \sin \theta - f = m (0)[/tex]

[tex]w \sin \theta - f = 0[/tex]

[tex]f = w \sin \theta[/tex]

[tex]\mu N = w \sin \theta[/tex]

[tex]\mu w \cos \theta = w \sin \theta[/tex] ← Equation 1

[tex]\mu = (w \sin \theta) \div ( w \cos \theta )[/tex]

[tex]\mu = \tan \theta[/tex]

[tex]\mu = \tan 17^o[/tex]

[tex]\mu \approx 0.31[/tex]

Learn moreVelocity of Runner : https://brainly.com/question/3813437Kinetic Energy : https://brainly.com/question/692781Acceleration : https://brainly.com/question/2283922The Speed of Car : https://brainly.com/question/568302Average Speed of Plane : https://brainly.com/question/12826372Impulse : https://brainly.com/question/12855855Gravity : https://brainly.com/question/1724648

Answer details

Grade: High School

Subject: Physics

Chapter: Dynamics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Mug , Friction , Coefficient , Static

The magnitude of frictional force exerted on the mug is [tex]\fbox{\begin\\({2.865}\right))m\end{minispace}}[/tex] and the coefficient of static friction is [tex]\fbox{0.31}[/tex].

Further explanation:

The opposition that every object feels when it moves is known as the frictional force. This is an opposing force. It always acts in the opposite direction of the motion of the object.

Given:

The angle of inclination of plane is [tex]{17^ \circ }[/tex].  

The acceleration due to gravity is [tex]9.8\,{\text{m/}}{{\text{s}}^{\text{2}}}[/tex].

Concept used:

The frictional force is defined as the opposition of motion of any object or body.  It is also defined as the product of coefficient of friction to the normal force exerted on the body.

The expression for the net force exerted on the mug is given as.

   [tex]\fbox{\begin\\{F_{{\text{net}}}} = mg\sin \theta\end{minispace}}[/tex]                                          …… (1)

Here,[tex]m[/tex] is the mass of the mug, [tex]g[/tex] is the acceleration due to gravity and[tex]\theta[/tex]  is the inclination angle.

The force that keeps the body at rest is known as the static friction force. It also acts in the opposite direction of motion of body.

The expression for the static frictional force is given as.

[tex]{F_s} = {\mu _s}N[/tex]                                                                  ..…. (2)

Here,[tex]{\mu _s}[/tex] is the coefficient of static frictional force and [tex]N[/tex] is the normal force exerted on the body.

When mug is placed on the inclined plane the static frictional force is equal to the frictional force. The vertical component of weight is balanced by the normal reaction of the mug.

The expression for the normal force is given as.

[tex]N-mg\cos\theta=0[/tex]

Rearrange the above expression.

[tex]N=mg\cos\theta[/tex]

Substitute[tex]mg\cos\theta[/tex]  for [tex]N[/tex] in equation (2).

[tex]{F_s} = {\mu _s}\left( {mg\cos \theta } \right)[/tex]

Here static frictional force is same as the frictional force exerted on the mug.

Substitute [tex]mg\sin\theta[/tex] for[tex]{F_s}[/tex] in above expression and rearrange it.

[tex]{\mu _s} = \dfrac{{\left( {mg\sin \theta } \right)}}{{\left( {mg\cos \theta } \right)}}[/tex]  

Rearrange the above expression.

[tex]\fbox{\begin\\{{\mu _s} = \tan \theta}\end{minispace}}[/tex]               …… (3)

Substitute[tex]{17^ \circ }[/tex]for [tex]\theta[/tex] and [tex]9.8\,{\text{m/}}{{\text{s}}^{\text{2}}}[/tex] for [tex]g[/tex]in equation (1).

[tex]\begin{aligned}{F_{{\text{net}}}} &= m\left( {9.8\,{\text{m/}}{{\text{s}}^{\text{2}}}}\right)\sin\left({{{17}^\circ}}\right)\\&=\left( {2.865}\right)m \\\end{aligned}[/tex]

Substitute [tex]{17^ \circ }[/tex]for [tex]\theta[/tex] in equation (3).

[tex]\begin{gathered}{\mu_s}=\tan\left( {{{17}^\circ }}\right)\\= 0.306 \\\end{gathered}[/tex]

Thus, the coefficient of static friction is [tex]0.31[/tex] and the magnitude of frictional force is [tex](2.865)m[/tex].

Learn more:

1.  Conservation of momentum https://brainly.com/question/9484203

2.  Motion of a ball under gravity https://brainly.com/question/10934170

3. Motion of a block under friction https://brainly.com/question/7031524

Answer Details:

Grade: College

Subject: Physics

Chapter: Kinematics

Keywords:

Friction, acceleration, carpeted floor, mug, inclined plane, force, relative motion, motion, normal reaction, net force, mass, surface, oppose, 9.8 m/s2, 17 degree, 0.67 m/s^2, 0.3006, 0.31, (2.865)m, (2.87)m.

to get copper from the solid phase to the liquid phase must of the copper sample

Answers

You would want to increase the temperature. 

Answer:

increase the temperature.

Explanation:

Neil has 3 partially full cans of white pants. they contain 1/3 gallon, 1/5 gallon,and 1/2 gallon of paint About how much paint does Neil have in all

Answers

Final answer:

Neil has a total of 1 1/30 gallons of paint when combining three partially full cans containing 1/3, 1/5, and 1/2 gallon of paint, after converting them to a common denominator and summing them up.

Explanation:

The student is asking about the total quantity of paint Neil has when combining three partially full cans with varying amounts. To find the total, we need to add the fractional quantities together: 1/3 gallon, 1/5 gallon, and 1/2 gallon of paint.

To add these fractions, they must have a common denominator. The least common denominator for 3, 5, and 2 is 30. Converting each fraction to have a denominator of 30, we get:

1/3 = 10/301/5 = 6/301/2 = 15/30

Adding these together, we have:

10/30 + 6/30 + 15/30 = 31/30

This result simplifies to 1 1/30 gallons. Therefore, Neil has a little more than one gallon of paint in total.

When jumping, a flea rapidly extends its legs, reaching a takeoff speed of 1.0 m/s over a distance of 0.50 mm find acceleration

Answers

The take off speed (final velocity) is:

v = 1.0 m/s

The total distance taken is:

d = 0.50 mm = 5 x 10^-4 m

 

To find the acceleration a, we use the formula: (vi is initial velocity = 0)

v^2 = vi^2 + 2 a d

(1.0 m/s)^2 = 2 a (5 x 10^-4 m)

a = 1,000 m/s^2

A 7.00 g bullet, when fired from a gun into a 0.80 kg block of wood held in a vise, penetrates the block to a depth of 8.20 cm. this block of wood is next placed on a frictionless horizontal surface, and a second 7.00 g bullet is fired from the gun into the block. to what depth will the bullet penetrate the block in this case?

Answers

Final answer:

To determine the depth to which the second bullet will penetrate the block, we can use the work-energy theorem. By comparing the initial kinetic energy of the bullet-block system to the work done by the average stopping force in each situation, we can find the depth.

Explanation:

The initial situation is when a 7.00 g bullet is fired into a 0.80 kg block of wood held in a vise. The bullet penetrates the block to a depth of 8.20 cm. In the second situation, the block of wood is placed on a frictionless horizontal surface, and a second 7.00 g bullet is fired into the block. The question asks to determine the depth to which the bullet will penetrate in this case.

To solve this problem, we can use the work-energy theorem. Since the wood block is on a frictionless horizontal surface, there is no external force doing work on the block-bullet system. Therefore, the initial kinetic energy of the bullet is equal to the work done by the average stopping force in stopping the bullet. We can equate these two and solve for the unknown depth.

In the initial situation, the bullet penetrated to a depth of 8.20 cm. We can use this known value along with the mass of the bullet and the mass of the block to find the initial kinetic energy of the bullet-bloc system. Then, we can set this initial kinetic energy equal to the work done by the average stopping force in the second situation to find the depth to which the bullet will penetrate.

An electron (m= 9.11 x 10 ^-31 kg) moves in a circle whose radius is 2.00 x 10^-2 m. If the force acting on the electron is 4.60 x 10^-14 N, what is the speed?

Answers

Final answer:

The speed of an electron moving in a circle can be found using the centripetal force formula F = mv²/r by substituting the known values of force, mass, and radius and solving for v.

Explanation:

To calculate the speed of the electron moving in a circular path with a given radius, we can use the centripetal force formula. The centripetal force F required to keep an object of mass m moving at a speed v on a circular path of radius r is given by the equation F = mv²/r. Given that the force acting on the electron is 4.60 x 10⁻¹⁴ N, the mass of the electron is 9.11 x 10⁻³¹ kg, and the radius of the circular path is 2.00 x 10⁻² m, we can substitute these values into the centripetal force formula and solve for v.

Re-arranging the formula:

v = √(Fr/m)

Substituting the known values:

v = √((4.60 x 10⁻¹⁴ N)(2.00 x 10⁻² m) / (9.11 x 10⁻³¹ kg))

Performing the calculation will give us the speed of the electron.

Forces are all around you . Describe an example of each of newton's laws of motion that you experience before you get to school in the morning. Include some of the forces involved in each situation.

Answers

One example is the wind especially in this weather in nyc i weigh 120 pounds and when I’m walking the wind blows so hard that it’s force pushes me sometimes i stand still or look for something to grab on so that i don’t fly away lol.

Final answer:

Before school, examples of Newton's laws of motion include remaining seated at breakfast due to inertia, lifting a backpack which demonstrates the second law with force and acceleration, and walking to the bus stop where action and reaction forces illustrate the third law.

Explanation:

Examples of Newton's Laws Before School

Newton's laws of motion are fundamental in understanding how forces affect motion in our daily lives. To apply these laws, we start by selecting an object and listing all the forces acting on it. This approach helps us solve problems involving various forces, such as friction, the normal force, and gravitational force.

First Law (Inertia): As you sit at breakfast, your body is at rest. Unless an unbalanced force acts upon you, you will remain stationary. The force of gravity pulls you down in your chair, and the normal force from the chair supports you from falling through.

Second Law (F=ma): When you pick up your backpack, the force you exert is equal to the mass of the backpack multiplied by the acceleration you give it. If the backpack is heavy (has more mass), it requires more force to accelerate.

Third Law (Action-Reaction): As you push off the ground to walk to the bus stop, your feet apply a force to the ground, and the ground pushes back with an equal and opposite force. This reaction force propels you forward.

These everyday examples show the application of Newton's three laws of motion, from the breakfast table to the walk to the bus stop, illustrating friction, the normal force, and gravitational force at play.

1. What conditions must be met for information to be considered true science?

2. How do scientific laws and theories differ?

3. Is it possible for a scientific theory to become a law? Why or why not?

Answers

Scientific law are proven scientific fact a theory isn’t it could be if you provide details of how it is a fact with investigations and observations,data and etc
Other Questions
compare and contrast George III and Charles Cornwallis. The circles, or orbits, for electrons are called energy levels. Each level can hold only a certain number of electrons. Add electrons to each level until you cant add any more. How many electrons can each level hold? Define what is meant by an amodal shipper, and discuss the factors that have contributed to its growth what is the square root of negative 100 Why does a lack of movement create swelling in barbara's legs? Which statement about a sovereign state is true?A. it has absolute power within its own territory.B. its has a larger and steadily growing population.C. its has a government that cannot enforce policy. D. Its has borders that are constantly changing. A. 12.2B. 13.45C. 16.87D. 15.12 Which Germanic group took control of the Italian peninsula after the end of the classical Roman empire? Who fought alongside the texans in the mexican american war? When julia goes to the first class of her operations management course, she finds out that in addition to the textbook she already purchased, she also needs a copy of the book the goal. at which stage of the consumer buying decision process is julia? The sum of the measures of two interior angles of a triangle equals 150. What is the measure of the third angle?A.30B.40C.50D.60 What is the product in lowest terms?1/4 x 3/5. ( / means fractions)1.1/152.3/203.1/34.4/9 The hawaiian island-emperor seamount chain formed as a result of ________. Multiply and give the answer in scientific notation: (2.3 x 10-3)(3 x 108) Write as a sum of logarithms log 1/2 (abc) Which land biome has the greatest diversity of plant species and which has the least? How many ep in season 1 of dragon ball z? Microscopic, single-celled organisms that often cause recurrent diseases are called Allied leaders sought to address the Sudetenland conflict byagreeing to give Hitler land where the predominant population was German.offering to pay Hitler to stop the annexation of a part of Czechoslovakia. convincing Czechoslovakia to give up land where Germans were a majority.helping Czechoslovakia fight the annexation of this part of their country. What is the gerund phrase: Some Pueblo groups teach pottery making to tourists.? Steam Workshop Downloader