Compute the face value of a 90-day promissory note dated October 22, 2018 that has a maturity value of $76,386.99 and an interest rate of 7.5% p.a.

Answers

Answer 1

Answer:

The face value would be $75,000

Step-by-step explanation:

Maturity value = $76,386.99

Time = 90 days

Rate of interest = 7.5%

Let face value be 'x'

By using the formula [tex]A=P(1+\frac{RT}{100})[/tex]

                      $76,386.99 = [tex]x(1+\frac{7.5\times \frac{90}{365}}{100})[/tex]

Time in years = [tex]\frac{90}{365}[/tex]

⇒ $76,386.99 = x( 1 + 0.01849315 )

⇒ x = [tex]\frac{76,386.99}{1.01849315}[/tex]

x = $75,000

The face value would be $75,000


Related Questions

At a Shop on Times Square three "" I LOVE NY"" T- Shirts Sell every 10 minutes for $ 19.95 each . Every 45 minutes one Yankee's Hat sells for $ 24.95 . The Shop is Open from 9 Am to 9 Pm Every day .So,the Question is How Many T-Shirts Are Sold in a Week ??? ​

Answers

$19.95×6
=$119.7x12
=$1436.4x7
=$ 10054.8
Final answer:

The shop sells 216 "I LOVE NY" T-shirts each day. Therefore, over the course of one week, the shop sells 1512 T-shirts.

Explanation:

The shop in Times Square is open from 9 am to 9 pm, which means the shop operates for 12 hours. Since there are 60 minutes in an hour, this shop is open for a total of 720 minutes each day.

Three "I LOVE NY" T-shirts are sold every 10 minutes. So, in 720 minutes, the number of T-shirts sold would be 720 ÷ 10 = 72 sets of three T-shirts. Therefore, 72 sets x 3 shirts = 216 T-shirts are sold per day.

Finally, to calculate the weekly total, it is necessary to multiply the daily total by 7 (the number of days in a week). So, 216 T-shirts x 7 days = 1512 T-shirts sold in one week.

Learn more about Weekly Sales here:

https://brainly.com/question/32042123

#SPJ2

Translate the Phrase : "" Nine times the difference of a number and 3"" into an Algebraic Expression and then Simplify . Let X represent the real number . ​

Answers

Step-by-step explanation:

[tex]x-\text{the number}\\\\\text{Nine times the difference of a number and 3}:\\\\\boxed{9\times(x-3)=9(x-3)}[/tex]

[tex]9(x-3)\qquad\text{use the distributive property}\ a(b+c)=ab+ac\\\\=9x+(9)(-3)\\\\=9x-27[/tex]

Hello!! i’m not sure how to do this question, if you could explain your work that’d b great!!

Answers

[tex]\bf \sqrt{xy}=y\implies \left( xy \right)^{\frac{1}{2}}=y\implies \stackrel{\textit{chain rule~\hfill }}{\cfrac{1}{2}(xy)^{-\frac{1}{2}}\stackrel{\textit{product rule}}{\left(y+x\cfrac{dy}{dx} \right)}}=\cfrac{dy}{dx} \\\\\\ \cfrac{1}{2\sqrt{xy}}\left(y+x\cfrac{dy}{dx} \right)=\cfrac{dy}{dx}\implies \cfrac{y}{2\sqrt{xy}}+\cfrac{x}{2\sqrt{xy}}\cdot \cfrac{dy}{dx}=\cfrac{dy}{dx}[/tex]

[tex]\bf \cfrac{x}{2\sqrt{xy}}\cdot \cfrac{dy}{dx}=\cfrac{dy}{dx}-\cfrac{y}{2\sqrt{xy}} \implies \cfrac{x}{2\sqrt{xy}}\cdot \cfrac{dy}{dx}-\cfrac{dy}{dx}=-\cfrac{y}{2\sqrt{xy}} \\\\\\ \stackrel{\textit{common factor}}{\cfrac{dy}{dx}\left( \cfrac{x}{2\sqrt{xy}}-1 \right)}=-\cfrac{y}{2\sqrt{xy}} \implies \cfrac{dy}{dx}=-\cfrac{y}{\left( \frac{x}{2\sqrt{xy}}-1 \right)2\sqrt{xy}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \cfrac{dy}{dx}=-\cfrac{y}{x-2\sqrt{xy}}~\hfill[/tex]

Find the angle 0 between the vectors. u=(1, 1, 1, 0), v = (4, 4, 4, 4).

Answers

Answer:

30 degrees

Step-by-step explanation:

u dot v=1*4+1*4+1*4+0*4=4+4+4+0=12

|u|=sqrt(1^2+1^2+1^2+0^2)=sqrt(3)

|v|=sqrt(4^2+4^2+4^2+4^2)=sqrt(4*4^2)=2*4=8

cos(theta)=u dot v/(|u||v|)

cos(theta)=12/(sqrt(3)*8)

cos(theta)=3/(sqrt(3)*2)

cos(theta)=sqrt(3)/2

theta=30 degrees

15, Evaluate 6 choose 4.

Answers

Answer:  The required result is 15.

Step-by-step explanation:  We are given to evaluate the following :

"6 choose 4".

Since we are to choose 4 from 6, so we have to use the combination of 6 different things chosen 4 at a time.

We know that

the formula for the combination of n different things chosen r at a time is given by

[tex]^nC_r=\dfrac{n!}{r!(n-r)!}.[/tex]

For the given situation, n = 6  and  r = 4.

Therefore, we get

[tex]^6C_4=\dfrac{6!}{4!(6-4)!}=\dfrac{6!}{4!2!}=\dfrac{6\times5\times4!}{4!\times2\times1}=15.[/tex]

Thus, the required result is 15.

How many mL of 75% alcohol should be mixed with 10% of 1000 cc alcohol to prepare 30% of 500 mL alcohol solution? a. 346.16 mL b. 234.43 mL c. 153.84 mL d. 121.12 mL e.

Answers

Answer:

C. 153.84 mL

Step-by-step explanation:

Let's say x is the volume of 75% solution and y is the volume of 10% solution.

Sum of the volumes:

x + y = 500

Sum of the alcohol amounts:

0.75x + 0.10y = 0.30(500)

0.75x + 0.10y = 150

Solve the system of equations using either substitution or elimination.  I'll use substitution.

y = 500 - x

0.75x + 0.10 (500 - x) = 150

0.75x + 50 - 0.10x = 150

0.65x = 100

x = 153.84

You need 153.84 mL of 75% solution.

"153.84 mL" of 75% alcohol should be added. A further explanation is provided below.

Let,

75% alcohol used be "x".10% alcohol used be "y".

then,

→ [tex]x+y = 500[/tex]

         [tex]y = (500-x)[/tex]

now,

→ [tex]75(x)+10(500-x) = 500\times 30[/tex]

                [tex]65x+5000=15000[/tex]

                           [tex]65x=15000-5000[/tex]

                           [tex]65x=10000[/tex]

                               [tex]x = \frac{10000}{65}[/tex]

                                  [tex]= \frac{2000}{13}[/tex]

                                  [tex]= 153.84 \ mL[/tex]

Thus the above response i.e., "option c" is correct.

Learn more:

https://brainly.com/question/12925084

Do more Republicans (group A) than Democrats (group B) favor a bill to make it easier for someone to own a firearm? Two hundred Republicans and two hundred Democrats were asked if they favored a bill that made it easier for someone to own a firearm. How would we write the alternative hypothesis?

Answers

Final answer:

The alternative hypothesis would state that the proportion of Republicans who favor a bill to make gun ownership easier is not equal to the proportion of Democrats who favor the same.

Explanation:

The question was regarding how to construct an alternative hypothesis for a study on political beliefs and opinions on firearm ownership. In this case, the alternative hypothesis statement goes against the null hypothesis. The null hypothesis would be that there's no significant difference between the proportions of Republicans and Democrats that favor a bill making gun ownership easier. So, the alternative hypothesis can be written as: 'The proportion of Republicans (Group A) who favor a bill making it easier for someone to own a firearm is not equal to the proportion of Democrats (Group B) who favor the same.'

Learn more about Alternative Hypothesis here:

https://brainly.com/question/30899146

#SPJ12

Final answer:

The alternative hypothesis can be written as: H_A: The proportion of Republicans who favor a bill to make it easier for someone to own a firearm differs from the proportion of Democrats who favor the same.

Explanation:

The alternative hypothesis can be written as:

HA: The proportion of Republicans who favor a bill to make it easier for someone to own a firearm differs from the proportion of Democrats who favor the same.

Alternatively, it can be written as:

HA: pA ≠ pB

where pA is the proportion of Republicans who favor the bill and pB is the proportion of Democrats who favor the bill.

Learn more about Alternative Hypothesis here:

https://brainly.com/question/30899146

#SPJ11

A packet of sour worms contains four​ strawberry, four​ lime, two black​ currant, two orange​ sour, and three green apple worms. What is the probability that Dustin will choose a green apple sour​ worm, P(green​ apple)?

Answers

Answer:

3/15 or 0.2

Step-by-step explanation:


Nico is saving money for his college education. He invests some money at 7%, and $1200 less than that amount at 3%. The investments produced a total of $174 interest in 1 yr. How much did he invest at each rate?

He invested $____at 7% and _____ at 3%.

Answers

Answer:

Nico invest [tex]\$2,100[/tex] at 7% and [tex]x=\$900[/tex] at 3%

Step-by-step explanation:

we know that

The simple interest formula is equal to

[tex]I=P(rt)[/tex]

where

I is the Final Interest Value

P is the Principal amount of money to be invested

r is the rate of interest  

t is Number of Time Periods

in this problem we have

At 7%

[tex]t=1\ years\\ P=\$x\\r=0.07[/tex]

substitute in the formula above

[tex]I1=x(0.07*1)[/tex]

[tex]I1=0.07x[/tex]

At 3%

[tex]t=1\ years\\ P=\$(x-1,200)\\r=0.03[/tex]

substitute in the formula above

[tex]I2=(x-1,200)(0.03*1)[/tex]

[tex]I2=0.03x-36[/tex]

The total interest is equal to

I=I1+I2

I=$174

substitute

[tex]174=0.07x+0.03x-36[/tex]

[tex]0.10x=174+36[/tex]

[tex]0.10x=210[/tex]

[tex]x=\$2,100[/tex]

[tex]x-1,200=2,100-1,200=\$900[/tex]

therefore

Nico invest [tex]\$2,100[/tex] at 7% and [tex]x=\$900[/tex] at 3%

A class of 32 students is organised in 33 teams every team consists of 3 students and there are no identical teams . show that there are two teams with exactly one common student

Answers

Answer:

Step-by-step explanation:

Let's start by making up as many teams as we can with the 32 student. Given that each team is different, we can make 10 teams of 3 each. (we still have 23 more teams to make).

The last two people make a team of only 2. No matter which student from the 30 other students is picked, the team of two and the one the student is coming from will have one student in common. Though there are more borrowings that take place (many more), the results remain as stated. At least 2 teams will have 1 person in common.

The method is called the pigeon hole method.

Final answer:

By applying the Pigeonhole Principle in combinatorics, in a scenario where 32 students are assigned to 33 teams of 3 students each, there must exist two teams that share exactly one student.

Explanation:

This problem can be solved by using the principles of Combinatorics and the Pigeonhole Principle. The Pigeonhole Principle states that if you try to distribute n items into m containers and n > m, then at least one container must contain more than one item.

In the given scenario, we have 32 students that are being assigned to 33 teams, with each team consisting of 3 students. That means a total of 96 (3 x 32) places in teams.

If each student is a 'pigeon' and each 'place' in a team is a 'pigeonhole', the Pigeonhole Principle tells us that at least two pigeons must share at least one pigeonhole. Since each student can't be in more than one place at a time nor in the same team more than once, there must exist two teams that share exactly one student.

Learn more about Pigeonhole Principle here:

https://brainly.com/question/34617354

#SPJ11

Consider a bag that contains 220 coins of which 6 are rare Indian pennies. For the given pair of events A and​ B, complete parts​ (a) and​ (b) below. ​A: When one of the 220 coins is randomly​ selected, it is one of the 6 Indian pennies. ​B: When another one of the 220 coins is randomly selected​ (with replacement), it is also one of the 6 Indian pennies. a. Determine whether events A and B are independent or dependent. b. Find​ P(A and​ B), the probability that events A and B both occur.

Answers

Answer:

a. The two events are dependent.

b. [tex]P(A\cap B)[/tex]= [tex]\frac{1}{220}[/tex].

Step-by-step explanation:

Given

Total coins =220

Number of Indian pennies= 6

A: When one of the 220 coins is randomly selected, it is one of the Indian pennies.

Therefore , the probability of getting an  Indian pennies=[tex]\frac{6}{220 }[/tex]

By using formula of probability=[tex]\frac{Number \; of\; favourable\; cases}{total\; number \; of \;cases}[/tex]

Probability of getting an  Indian pennies=[tex]\frac{3}{110}[/tex]

B: When another one of the 220 coins is randomly selected( with replacement) , It is also one of the Indian pennies.

Therefore, probability of getting an Indian pennies=[tex]\frac{6}{220}[/tex]

Probability of getting an Indian pennies =[tex]\frac{3}{110}[/tex]

[tex]A\cap B[/tex]: 1

[tex]P(A\cap B)=\frac{1}{220}[/tex]

If two events are independent. Then

[tex]P(A\cap B)= P(A)\times p(B)[/tex]

P(A).P(B)= [tex]\frac{3}{110} \times \frac{3}{110}[/tex]=[tex]\frac{9}{12100}[/tex]

Hence, [tex]P(A\cap B)\neq P(A).P(B)[/tex]

Therefore, the two events are dependent.

b. Probability that events A and B both occur

Number of favourable cases when both events A and B occur=1

Total coins=220

Probability=[tex]\frac{Number \; of\; favourable \; cases}{Total\; number\; of\; cases}[/tex]

[tex]P(A\cap B)=\frac{1}{220}[/tex]

A rectangular aquarium has length (x+ 10), width (x + 4), and height (t + 6). Determine a simplified function that represents the volume of the aquarium. [2 Marks)

Answers

Answer:

V = x³ + 20x² + 124x + 240

Step-by-step explanation:

Volume of a rectangular prism is width times length times height.

V = wlh

Given w = x+4, l = x+10, and h = x + 6:

V = (x + 4)(x + 10)(x + 6)

V = (x + 4)(x² + 16x + 60)

V = x²(x + 4) + 16x(x + 4) + 60(x + 4)

V = x³ + 4x² + 16x² + 64x + 60x + 240

V = x³ + 20x² + 124x + 240

Final answer:

The volume of the rectangular aquarium is given by the function V = x²t + 6x² + 14xt + 84x + 40t + 240, representing the product of its length, width, and height with given dimensions.

Explanation:

To determine a simplified function that represents the volume of the aquarium with given dimensions, we need to use the formula for the volume of a rectangular prism, which is length × width × height. The problem provides expressions for these dimensions: length is (x + 10), width is (x + 4), and height is (t + 6).

Therefore, the volume V of the aquarium can be calculated as follows:

V = (x + 10) × (x + 4) × (t + 6)

To simplify this, we multiply the expressions:

V = (x² + 14x + 40)(t + 6)

Expanding this, we get:

V = x²t + 6x² + 14xt + 84x + 40t + 240

This is the simplified function for the volume of the aquarium in terms of x and t.

What are the solutions of the equation x4 + 6x2 + 5 = 0? Use u substitution to solve.

Answers

Answer:

2nd answer.

Step-by-step explanation:

see attached.

Answer with Step-by-step explanation:

We have to find the solution of the equation:

[tex]x^4+6x^2+5=0[/tex]

Let u=x²

Then, above equation is transformed to:

[tex]u^2+6u+5=0[/tex]

it could also be written as:

[tex]u^2+5u+u+5=0[/tex]

u(u+5)+1(u+5)=0

(u+1)(u+5)=0

either  u+1=0 or u+5=0

either u= -1 or u= -5

Putting u=x²

x² = -1 or x² = -5

On taking square root both sides

x= ± i  or  x= ± i√5

Hence, roots of the equation [tex]x^4+6x^2+5=0[/tex] are:

i , -i , i√5 and -i√5

In 1987, the General Social Survey asked, "Have you ever been active in a veteran's group? " For this question, 52 people said that they did out of 98 randomly selected people. The General Social survey randomly selects adults living in the US. Someone wanted to compute a 95% confidence interval for p. What is parameter?

Answers

Final answer:

The parameter in this question refers to the population proportion. To compute a 95% confidence interval for the proportion, you can use the formula: p ± z × √(p × (1-p) / n). The sample proportion is 0.53 and the sample size is 98. By plugging these values into the formula, you can calculate the confidence interval.

Explanation:

The parameter in this question refers to the population proportion. In statistics, a parameter is a measure that describes a characteristic of a population. In this case, the parameter is the proportion of all adults living in the US who have been active in a veteran's group. To compute a 95% confidence interval for this proportion, you can use the formula:  p ± z × √(p × (1-p) / n), where p is the sample proportion, z is the z-score corresponding to the desired confidence level, and n is the sample size.

Using the provided information, the sample proportion is 52/98 = 0.53. To find the z-score for a 95% confidence level, you can use a standard normal distribution table or a calculator with the function invNorm(0.975). The z-score for a 95% confidence level is approximately 1.96. The sample size is 98. Plugging these values into the formula, you can calculate the confidence interval for the population proportion.

Confidence interval = 0.53 ± 1.96 × √(0.53 × (1-0.53) / 98) = 0.53 ± 0.0907

The parameter p is the true proportion of adults in the US who have ever been active in a veteran's group, and the 95% confidence interval for this parameter is (0.4317, 0.6295).

The formula for a 95% confidence interval for a proportion is given by:

[tex]\[ \hat{p} \pm z \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \][/tex]

where z is the z-score corresponding to the desired confidence level. For a 95% confidence interval, the z-score is approximately 1.96.

Let's calculate the confidence interval:

 1. Calculate the sample proportion [tex]\( \hat{p} \)[/tex]:

[tex]\[ \hat{p} = \frac{52}{98} \approx 0.5306 \][/tex]

2. Calculate the standard error of the proportion:

[tex]\[ SE = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = \sqrt{\frac{0.5306(1 - 0.5306)}{98}} \approx \sqrt{\frac{0.2503}{98}} \approx \sqrt{0.002554} \approx 0.0505 \][/tex]

3. Find the z-score for a 95% confidence interval, which is approximately 1.96.

4. Calculate the margin of error:

[tex]\[ ME = z \times SE \approx 1.96 \times 0.0505 \approx 0.0989 \][/tex]

5. Calculate the confidence interval:

[tex]\[ \text{Lower bound} = \hat{p} - ME \approx 0.5306 - 0.0989 \approx 0.4317 \] \[ \text{Upper bound} = \hat{p} + ME \approx 0.5306 + 0.0989 \approx 0.6295 \][/tex]

Therefore, the 95% confidence interval for the proportion p of all adults living in the US who have ever been active in a veteran's group is approximately (0.4317, 0.6295).

Consider two sizes of disk, both of mass M. One size of disk has radius R; the other has radius 4R. System A consists of two of the larger disks rigidly connected to each other with a common axis of rotation. System B consists of one of the larger disks and a number of the smaller disks rigidly connected with a common axis of rotation. If the moment of inertia for system A = the moment of inertia for system B, how many of the smaller disks are in system B? 1 4 10 16

Answers

Answer:

  16

Step-by-step explanation:

Moment of inertia of a disk is proportional to its mass and to the square of its radius. For two disks with the same mass, the larger one will have a moment of inertia that is (4R/R)^2 = 16 times that of the smaller one.

It will take 16 smaller disks to make the systems have the same moment of inertia.

Evaluate the Expression B^2-4 ac given by that a = -2 ,, b= -2 and c =2​

Answers

F* you B*!!!!!! Your so S*! That's the easiest thing in the world!!

Find the geometric means in the following sequence.

Answers

Answer:

Choice A

Step-by-step explanation:

a=-6           (1st term)

ar=             (2nd term)

ar^2=         (3rd term)

ar^3           (4th term)

ar^4=         (5th term)

ar^5=-1458 (6th term)

a=-6 so -6r^5=-1458

divide both sides by -6 giving r^5=243 so to obtain r you do the fifth root of 243 which is 3.

The common ratio is 3.

so ar=6(-3)=-18 (2nd term)

Only choice A fits this.

In January 2013 a country‘s first class mail rates increased to 42 cents for the 1st ounce and 22 cents for each additional ounce. Is Sabrina spent $16.24 for a total of 52 stamps of these two denominations how many stamps of each denomination did she buy?

She bought ___ 42 cent stamps
And _____ 22 cent stamps

Answers

Answer:

She bought 24 42-cent stampsAnd 28 22-cent stamps

Step-by-step explanation:

Let n represent the number of 42-cent stamps Sabrina bought. Then 52-n is the number of 22-cent stamps she bought. Her total expense was ...

  0.42n +0.22(52 -n) = 16.24 . . . . total price of stamps

  0.20n + 11.44 = 16.24 . . . . . . . . . simplify

  0.20n = 4.80 . . . . . . . . . . . . . . . . subtract 11.44

  n = 24 . . . . . . . . . . . . . . . . . . . . . . divide by the coefficient of n

  52-n = 28 . . . . . . . . . . . . . . . . . . . find the number of 22-cent stamps

She bought 24 42-cent stamps and 28 22-cent stamps.

She bought 24-42 cent stamps

And, 28-22 cent stamps.

Calculation of number of stamps:

Here we assume  n be the number of 42-cent stamps

The equation should be

0.42n +0.22(52 -n) = 16.24

0.20n + 11.44 = 16.24

0.20n = 4.80

n = 24

Now

= 52 - n

= 52 - 24

= 28

Learn more about the cent here; https://brainly.com/question/3789339

which of the following is the quotient of .4375 divided by .35

Answers

Answer:

Quotient will be 1.25

Step-by-step explanation:

First we convert decimal numbers to fractions. So write down the decimal divided by 1 and then multiply both top and bottom with 10 for every number after decimal point.

Here we found for  .4375  = [tex]\frac{4375}{10000}[/tex]

and .35 =   [tex]\frac{35}{100}[/tex]

Now we divide both the numbers as

= [tex]\frac{\frac{4375}{1000} }{\frac{35}{100} }[/tex]

= [tex]\frac{4375}{1000}[/tex] × [tex]\frac{100}{35}[/tex]

= [tex]\frac{125}{100}[/tex]

= 1.25

Quotient will be 1.25

Final answer:

The quotient of 0.4375 divided by 0.35 is 1.25, which rounded to the tenths place is 1.3.

Explanation:

The student is asking to find the quotient of two decimal numbers, which is a basic arithmetic operation involving division. The numbers are 0.4375 and 0.35. To find the quotient, simply divide 0.4375 by 0.35.

Using a calculator or performing the division manually, you would proceed as follows:

Adjust the decimals by multiplying both numbers by 100 to make them whole numbers, resulting in 43.75 divided by 35.

Perform the division to get the preliminary result: 43.75 / 35 = 1.25.

Since we need to round the final answer to the tenths place based on the least precise number given (35.5 g), round 1.25 to one decimal place, which is 1.3 (1.25 rounds up because the next digit, 5, is equal to or greater than 5).

Therefore, the quotient of 0.4375 divided by 0.35, rounded to the tenths place, is 1.3.

Translate the Variable Expression 3n -7 into Verbal Expression​

Answers

Step-by-step explanation:

[tex]3n-7\\\\\text{The difference between three times the number n and seven.}[/tex]

An expression is a set of numbers, variables, and mathematical operations. The Variable Expression 3n -7 into Verbal Expression​ can be written as expression 7 less than 3 times a number 'n'.

What is an Expression?

In mathematics, an expression is defined as a set of numbers, variables, and mathematical operations formed according to rules dependent on the context.

The expression that is given to us is 3n -7, this expression can be written as a verbal expression 7 less than 3 times a number 'n' or 7 subtracted from  3 times of number 'n'.

Hence, the Variable Expression 3n -7 into Verbal Expression​ can be written as expression 7 less than 3 times a number 'n'.

Learn more about Expression here:

https://brainly.com/question/13947055

#SPJ5

The weights of broilers (commercially raised chickens) are approximately normally distributed with mean 1387 grams and standard deviation 161 grams. What is the probability that a randomly selected broiler weighs more than 1,425 grams?

Answers

Answer:  0.3936

Step-by-step explanation:

Given: Mean : [tex]\mu =1387 \text{ grams}[/tex]

Standard deviation : [tex]\sigma = 161 \text{ grams}[/tex]

The formula to calculate z is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 1,425 grams

[tex]z=\dfrac{1425-1387}{161}=0.23602484472\approx0.27[/tex]

The P Value =[tex]P(X>1425)=P(z>0.27)=1-0.6064198=0.3935802\approx0.3936[/tex]

Hence, the  probability that a randomly selected broiler weighs more than 1,425 grams =0.3936

Final Answer:

There is approximately a 40.66% chance that a randomly selected broiler weighs more than 1,425 grams.

Explanation:

To solve this problem, you will need to apply the properties of the normal distribution. We want to find out the probability that a broiler weighs more than 1,425 grams.
Given:
- Mean (μ) = 1387 grams
- Standard deviation (σ) = 161 grams
- X = 1425 grams (the value we're interested in)

Step 1: First, we compute the z-score for the weight of 1425 grams. The z-score is a measure of how many standard deviations an element is from the mean. It can be calculated using the formula:

[tex]\[ z = \frac{(X - \mu)}{\sigma} \][/tex]

where X is the value for which we're finding the probability, μ is the mean, and σ is the standard deviation.

Step 2: Insert the values into the formula to compute the z-score for 1425 grams:

[tex]\[ z = \frac{(1425 - 1387)}{161} \\\\\[ z = \frac{38}{161} \\\\\[ z \approx 0.236 \][/tex]
Step 3: Once we have the z-score, we can use the z-table (a standard normal distribution table) to find out the probability of a z-score being less than 0.236. However, since we want the probability that the broiler weighs more than 1425 grams, we are interested in the probability of a z-score being greater than 0.236.

Step 4: Look up the corresponding probability for z = 0.236 on the z-table. The z-table gives us the area under the normal curve to the left of the z-score.

Let's assume the z-table gives us a probability of P(Z < 0.236). The value would typically be around 0.5934, which means there is a 59.34% chance that a random broiler will weigh less than 1425 grams.

Step 5: To find the probability that a broiler weighs more than 1425 grams, we subtract the value found in the z-table from 1 because the total area under the curve equals 1 (which corresponds to the probability of all possible outcomes).

[tex]\[ P(Z > 0.236) = 1 - P(Z < 0.236) \\\\\[ P(Z > 0.236) = 1 - 0.5934 \\\\\[ P(Z > 0.236) \approx 0.4066 \][/tex]

There are red blood cells contained in 50 oubic millimeters of blood se scientific notation. Use the multiplication symbol in the math palette as needed )

Answers

Answer: 5\times10

Step-by-step explanation:

We know that the scientific notation is a representation of a very large or a very small number in the product of a decimal form of number (commonly between 1 and 10) and powers of ten.

Given : There are red blood cells contained in 50 cubic millimeters of blood .

The representation of 50 cubic millimeters in scientific notation is given by :-

[tex]5\times10\ \text{cubic millimeters }[/tex]

find the solutions of the system

y=x^2+3x-4

y=2x+2


a. (-3,6) and (2,-4)

b. (-3,-4) and (2,6)

c. (-3,-4) and (-2,-2)

d. no solution

Answers

Answer:

b. (-3, -4) and (2, 6)

Step-by-step explanation:

By the transitive property of equality, if y equals thing 1 and y also equals thing 2, then thing1 and thing 2 are also equal.  So we will set them equal to each other and factor to solve for the 2 values of x:

[tex]2x+2=x^2+3x-4[/tex]

Get everything on one side of the equals sign, set the whole mess equal to 0, and combine like terms to get:

[tex]0=x^2+x-6[/tex]

Because this is a second degree polynomial, a quadratic to be precise, it has 2 solutions.  We need to find those 2 values of x and then use them in either one of the original equations to solve for the y values that go with each x.  

Factoring that polynomial above gives you the x values of x = -3 and 2.  Sub in -3 first:

y = 2(-3) + 2 and

y = -6 + 2 so

y = -4

Therefore, the coordinate is (-3, -4).

Onto the next x value of 2:

y = 2(2) + 2 and

y = 4 + 2 so

y = 6

Therefore, the coordinate is (2, 6)

If you drive 5 miles​ south, then make a left turn and drive 12 miles​ east, how far are​ you, in a straight​ line, from your starting​ point? Use the Pythagorean Theorem to solve the problem. Use a calculator to find square​ roots, rounding to the nearest tenth as needed.

Answers

Answer: Hence, the distance covered in a straight line from the starting point is 13 miles.

Step-by-step explanation:

Since we have given that

Distance between AB = 5 miles

Distance between BC = 12 miles

We need to find the distance covered from the starting point.

We will use "Pythagorean Theorem":

[tex]H^2=P^2+B^2\\\\AC^2=AB^2+BC^2\\\\AC^2=5^2+12^2\\\\AC^2=25+144\\\\AC^2=169\\\\AC=\sqrt{169}\\\\AC=13\ miles[/tex]

Hence, the distance covered in a straight line from the starting point is 13 miles.

Let F = (z − y) i + (x − z) j + (y − x) k . Let C be the rectangle of width 2 and length 5 centered at (7, 7, 7) on the plane x + y + z = 21, oriented clockwise when viewed from the origin. (a) Find curlF . curlF = ⟨2,2,2⟩ (b) Use Stokes' Theorem to find F · dr C . F · dr C = −60 √3​

Answers

Final answer:

The curl of the vector field F is 2i + 2j + 2k. The dot product of F and dr along the closed path C is -60√3.

Explanation:

To find the curl of vector field F, we need to compute the partial derivatives of its components with respect to x, y, and z. In this case, F = (z-y)i + (x-z)j + (y-x)k. Taking the partial derivatives, we get curlF = 2i + 2j + 2k.

The dot product of F and dr along the closed path C can be calculated using Stokes' Theorem. By evaluating the dot product and integrating over C, we find that F · dr = -60√3.

Learn more about Curl and Stokes' Theorem here:

https://brainly.com/question/34111637

#SPJ11

Translate the phrase "" Nine times the difference of a number and 8"" into a algebraic expression . Simplify your result​

Answers

click on picture, sorry if it's hard to read, but my phone messed up the typing

The phrase 'Nine times the difference of a number and 8' is translated into the algebraic expression 9(n - 8) and simplified to 9n - 72.

The phrase 'Nine times the difference of a number and 8' translates to an algebraic expression by following specific mathematical operations. To represent an unknown number, we use a variable, such as 'n', and the phrase 'the difference of a number and 8' would be written as 'n - 8'. To adhere to the phrase 'nine times', we multiply the difference by 9, leading to the expression 9(n - 8).

When we simplify the expression, we need to distribute the 9 to both terms within the parentheses: 9 × n and 9 × (-8), which gives us 9n - 72. Thus, the simplified algebraic expression for the phrase 'Nine times the difference of a number and 8' is 9n - 72.

According to a​ study, 80​% of​ K-12 schools or districts in a country use digital content such as​ ebooks, audio​ books, and digital textbooks. Of these 80​%, 5 out of 10 use digital content as part of their curriculum. Find the probability that a randomly selected school or district uses digital content and uses it as part of their curriculum.

Answers

Answer: There is a probability of 40% of getting a school or district uses digital content and uses it as part of their curriculum.

Step-by-step explanation:

Since we have given that

Probability that schools or districts in a country use digital content = 80%

Probability that schools uses digital content as a part of their curriculum out of 80% = [tex]\dfrac{5}{10}[/tex]

So, the probability that a selected school or district uses digital content and uses it as  a part of their curriculum is given by

[tex]\dfrac{80}{100}\times \dfrac{5}{10}\\\\=0.8\times 0.5\\\\=0.4\\\\=40\%[/tex]

Hence, there is a probability of 40% of getting a school or district uses digital content and uses it as part of their curriculum.

Final answer:

The probability that a randomly selected school or district uses digital content and uses it as part of their curriculum is 40%.

Explanation:

To find the probability that a randomly selected school or district uses digital content and uses it as part of their curriculum, we need to multiply the probabilities of these events occurring.

Given that 80% of K-12 schools or districts use digital content and 5 out of 10 of these schools use it as part of their curriculum, we can calculate the probability as:

P(Uses digital content and uses it as part of curriculum) = P(Uses digital content) x P(Uses it as part of curriculum | Uses digital content)

Substituting the values, we have:

P(Uses digital content and uses it as part of curriculum) = 0.80 x 0.50 = 0.40 or 40%

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

In terms of x, find an expression that represents the area of the shaded region. The outer square has side lengths of (x+5) and the inner square has side lengths of (x-2), as shown.

Answers

Answer:

= (x+5)² = x² + 10x + 25

= (x-2)² = x² - 4x + 4

= (x² + 10x + 25) - (x² - 4x + 4)

 = x² + 10x + 25 - x² + 4x - 4

 = 14x + 21  square units

Final answer:

The area of the shaded region is found by subtracting the area of the inner square, (x-2)², from the area of the outer square, (x+5)², resulting in the expression 14x + 21.

Explanation:

The area of the shaded region in this problem represents the difference between the area of the outer square and the inner square.

To find this, we calculate the area of each square individually and then subtract one from the other.

First, the area of the outer square is (x+5)² and the area of the inner square is (x-2)².

Now, we find the difference between these two areas to isolate the shaded region:

Area of shaded region = (x+5)² - (x-2)²

To expand this, we use the binomial expansion:

(x+5)² = x² + 10x + 25(x-2)² = x² - 4x + 4

Now we subtract the smaller area from the larger area:

Shaded region = (x² + 10x + 25) - (x² - 4x + 4)

Shaded region = x² + 10x + 25 - x² + 4x - 4

Shaded region = 14x + 21

This expression represents the area of the shaded region in terms of x.

This extreme value problem has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint. f(x1, x2, ..., xn) = x1 + x2 + ... + xn; x12 + x22 + ... + xn2 = 4

Answers

[tex]f(x_1,\ldots,x_n)=x_1+\cdots+x_n=\displaystyle\sum_{i=1}^nx_i[/tex]

[tex]{x_1}^2+\cdots+{x_n}^2=\displaystyle\sum_{i=1}^n{x_i}^2=4[/tex]

The Lagrangian is

[tex]L(x_1,\ldots,x_n,\lambda)=\displaystyle\sum_{i=1}^nx_i+\lambda\left(\sum_{i=1}^n{x_i}^2-4\right)[/tex]

with partial derivatives (all set equal to 0)

[tex]L_{x_i}=1+2\lambda x_i=0\implies x_i=-\dfrac1{2\lambda}[/tex]

for [tex]1\le i\le n[/tex], and

[tex]L_\lambda=\displaystyle\sum_{i=1}^n{x_i}^2-4=0[/tex]

Substituting each [tex]x_i[/tex] into the second sum gives

[tex]\displaystyle\sum_{i=1}^n\left(-\frac1{2\lambda}\right)^2=4\implies\dfrac n{4\lambda^2}=4\implies\lambda=\pm\frac{\sqrt n}4[/tex]

Then we get two critical points,

[tex]x_i=-\dfrac1{2\frac{\sqrt n}4}=-\dfrac2{\sqrt n}[/tex]

or

[tex]x_i=-\dfrac1{2\left(-\frac{\sqrt n}4\right)}=\dfrac2{\sqrt n}[/tex]

At these points we get a value of [tex]f(x_1,\cdots,x_n)=\pm2\sqrt n[/tex], i.e. a maximum value of [tex]2\sqrt n[/tex] and a minimum value of [tex]-2\sqrt n[/tex].

What is the GCF of the expression a2b2c2 + a2bc2 - a2b2c

Answers

Answer:

a^2bc

Step-by-step explanation:

The GCF of the expression a2b2c2 + a2bc2 - a2b2c is a2bc.

The greatest common factor (GCF) of an algebraic expression is the largest polynomial that divides each of the terms without leaving a remainder. To find the GCF of the expression a2b2c2 + a2bc2 - a2b2c, first identify the common factors in each term.

Inspecting each term we see that a2 is a common factor for all of them, and the smallest power of b and c present in all terms is b and c, respectively. Therefore, the GCF is a2bc.

Other Questions
the coefficient of kinetic friction between a couch and the floor is 0.81. if the couch has a mass of 71 kg and you push it with a force of 650 n, what is the net force on the couch as it slides?a: 696 nb:86 n c: 46 n d:331 n Paul's unmarried daughter, Candace, lived with him in his home for the entire year. Paul is divorced. He owns his own home and pays all of the costs of upkeep for the home. Paul paid over one-half of the cost of support for Candace. Paul may file as head of household if Candace is __________. What two lobes does the central sulcus separate? WANT FREE BRAINLIEST AND FREE POINTS? ANSWER THIS DRIVERS ED QUESTION AND I GOT YOU! When turning left, watch for _____, who are frequently struck by left-turning vehicles.A. bicyclistsB. motorcyclistsC. large trucksD. pedestrians Which value of n makes the following equation true?3 sqrt n=8a.2b.16c.24d.512 how do oil sands affect emissions?? The build-up of ketone bodies is a result of?A) Acetoacetic acid being broken down to acid phosphataseB) The inability of the body to properly break down glucose in the liverC) The inability of the body to break down fatty acid in the heartD) A liberation of co A part of the acetyl group which cannot diffuse out of cells and the conversion of acetoacetic acid into beta hydroxybutyric acid In which figure is DE BC ? A. figure 1 B. figure 2 C. figure 3 D. figure 4 In Sunrise Over Fallujah, Captain Coles and Major Sessions are:a. Primary Charactersb. Secondary charactersc. Dynamic charactersd. All of the choices are correct. Given the parallelogram ABCD, solve for X when angle A equals (30+ 5x) and angle D equals (15+10x) degrees. Also, sides AB and CD opposite each other. What is the theme of " the story of the fisherman"? Which of these connections was illustrated by the reign of ashurbanipal? Products or services that may be sought as alternative solutions-such as purchasing tax planning software rather than paying a CPA to assist with preparing your taxes-are referred to as:A) buyers products.B) rivalry products.C) substitute products.D) competitive alternatives The Fourteenth Amendment ___. -defined who could be a citizen of the United States -excluded Confederate officers and officials from holding office -apportioned Representatives according to their respective numbers of voters ----none of these-all of these A potato is shot out of cylinder at an angle of 17 degrees above the horizontal with an initial speed of 20 m/s. What is its maximum height? 1) Find the lump that must be deposited today to have a future value of $ 25,000 in 5 years if funds earn 6 % componded annually. Lia doesn't like her personality psychology class because the instructor uses unannounced pop exams to test the students As a result, Lila never knows when she will be tested instructor is testing her on a O foxed-ratio schedule O fxed-interval variable-ratio variable-interval Identify an equation in point-slope form for the line perpendicular toy= -4x - 1 that passes through (-2, 7).O A. y-7 =-4(x+2)O B. y+2 = 4(x-7)O C. y+7--1(x-2)O D. y-7 - 2(x+2) Estimate -12 4/9 5 7/8. please help asap!!! A line passes through the points (200,4.0310^4) and (50,9.710^3). Find the value of y when x=100. Write your answer in scientific notation. Steam Workshop Downloader