The function shows exponential growth a stretch of the function f(x) = (1/3)^x .
What are exponential functions?When the expression of a function is such that it involves the input to be present as the exponent (power) of some constant, then such a function is called an exponential function. Their usual form is specified below. They are written in several equivalent forms.
Given that the exponential function f(x) = 3
The initial value of the function is 2.
The base of the function is 3.
When the intial value is where x=0
where x=0, the value of f(0)=3
The growth is 1/3 but it is decay, that might be correct, or not because it is decay.
It is a stretch of the function f(x)=(1/3) power of x
when x=3, then f(3)=1/9
The function shows exponential growth a stretch of the function f(x) = [tex](1/3)^x[/tex].
Learn more about exponential here:
https://brainly.com/question/2193820
#SPJ6
Right triangle ABC is shown below.
John has painted 4/5 of his house the next day he painted 2/3 of what he had left what fraction of the house is left to paint
The savings account offering which of these APRs and compounding periods offers the best APY?
4.0784% compounded monthly
4.0798% compounded semiannually
4.0730% compounded daily
Answer:
Option C is correct.
Step-by-step explanation:
The formula is = [tex](1+\frac{r}{n})^{n}-1[/tex]
r = rate of interest
n = number of times its compounded
1. 4.0784% compounded monthly
here n = 12
[tex](1+\frac{0.040784}{12})^{12} -1[/tex] = 1.0403-1 = 0.0403
2. 4.0798% compounded semiannually
here n = 2
[tex](1+\frac{0.040798}{12})^{2} -1[/tex] = 1.0066-1 = 0.0066
3. 4.0730% compounded daily
here n = 365
[tex](1+\frac{0.040730}{12})^{365}[/tex] = 3.328-1 = 2.328
Betsy and 3 of her friends are splitting a whole watermelon. There are 6 circular slices of watermelon. How many slices of watermelon will each person get?
The slices of watermelon each person will get is 1.5 slices.
If the watermelon is divided equally, the number of slices each person would get can be determined by dividing the total slices of watermelon by the total number of friends.
Slice each person would get = total slices / total number of friends
6 / 4 = 1.5 slices
A similar question was answered here: https://brainly.com/question/11636279
Let P=(x,y) be a point on the graph of y=x2−9. (a) Express the distance d from P to the origin as a function of x.
Explanation on finding distance from a point to the origin as a function of x and showing invariance under rotations.
Distance from point P to the origin as a function of x:
Given point P(x, y) on y = x² – 9.
The distance d from P to the origin is d = √(x² + y²).
Substitute y = x² - 9 into the distance formula to express d as a function of x: d = √(x² + (x² - 9)²).
Invariance of distance under rotations:
The distance from P to the origin remains constant regardless of the rotation, as it depends only on the coordinates of the point and not the orientation of the coordinate system.
Solve the problem as directed. The rate traveled from Amarillo to Austin by a bus averages 65 miles per hour. The bus arrived in Austin after eight hours of travel. An automobile averages 80 miles per hour. Using the inverse variation relationship, show what the time would be for the automobile to complete the trip. a0 hours
65*8 = 520 miles traveled
520/80 = 6.5 hours for the car
Answer:
The automobile would take 6.5 hours to complete the trip.
Step-by-step explanation:
This is a case of a inverse variation relationship because when you increase the speed of traveling the time of arriving will reduce, now we have to define the equation and the variables:
Inverse variation equation: [tex]x1y1=x2y2[/tex]
[tex]x1[/tex]: speed of the bus, 65 miles per hour
[tex]y1[/tex]: time to Austin by bus, 8 hours
[tex]x2[/tex]: speed of the automobile, 80 miles per hour
[tex]y2[/tex]: time to Austin by automobile, unknown
Now we can replace the values in the equation and clear [tex]y2[/tex], this is:
[tex]65*8=80*y2\\y2=\frac{65*8}{80} =\frac{520}{80} =6.5\\[/tex]
The automobile would take 6.5 hours to complete the trip.
The number of terms in a binomial expansion
is one less than the power
is equal to the power
is one more than the power
Answer:
(C) is one more than the power
Step-by-step explanation:
Let us consider a binomial expansion:
[tex](x+y)^2=x^2+2xy+y^2[/tex]
The power of the above expansion is [tex]2[/tex] and the number of the terms in the above binomial expansion are [tex]3[/tex], thus the total number of terms in the binomial expansion is one more than the power.
Hence, Option C is correct.
The shadow of a vertical tower is 50 m long when the angle of elevation of the sun is 35°. find the height of the tower. © k12 inc. 2. an airplane is flying 12,330 feet above level ground. the angle of depression from the plane to the base of a building is 11°. how far must the plane fly horizontally before it is directly over the building?
Trina's employer purchased a health insurance plan that cost $550 per month Trina pays $85 toward the plan each month what is the annual value of the employer's contribution
The annual value of the employer's contribution towards Trina's health insurance plan is $5,580.
Here, we have to find the annual value of the employer's contribution, we need to determine how much the employer pays towards the health insurance plan in one month.
Trina's employer purchased a health insurance plan that costs $550 per month, and Trina pays $85 toward the plan each month.
Therefore, the employer's contribution is the difference between the total cost of the plan and what Trina pays:
Employer's contribution = Total cost of the plan - Trina's contribution
Employer's contribution = $550 - $85
Employer's contribution = $465 per month
Now, to find the annual value of the employer's contribution, we multiply the monthly contribution by 12 (since there are 12 months in a year):
Annual employer's contribution = $465 * 12
Annual employer's contribution = $5,580
So, the annual value of the employer's contribution towards Trina's health insurance plan is $5,580.
To learn more on multiplication click:
brainly.com/question/5992872
#SPJ5
A rocket is launched with an initial velocity of 360 ft/s. The height of the rocket in meters is modeled by the function shown below, where t is time in seconds. h(t)=‒10t2 + 360t Which statement is true?
A. The rockets maximum height is 324 feet.
B. The rockets maximum height is 3240 feet.
C. In the interval from 9 seconds to 18 seconds, the rocket is descending.
D. The rocket hits the ground in 18 seconds.
Jessica wants to serve 3/4 of a pint of orange juice to each of her guests. Her juice jar can hold 12 full pints of juice. Jessica can serve the juice to guest
Answer:16
Step-by-step explanation:
David is playing a trivia game where he gains points for correct answers and loses points for incorrect answers. At the start of round 3 his score is −1500 points. During round 3 he answered five 1000 point questions correctly and three 500 points questions incorrectly. What is his score at the end of round 3?
A) −2000
B) −500
C) 2000
D) 3500
Answer:
2000 points
Step-by-step explanation:
Topic: Substraction, Addition and Products
You have to organize the problem, as you can see
at Start of Round 3 David Has: - 1500
During Round 3:
5 Questions: 1000 each correctly
so 5 x 1000 = 5000
3 Questions: - 500 each incorrectly
so 3 x -500 = -1500
at the End of Round 3:
Starting: -1500
During Round 3: 5000 - 1500 = 3500
the end of round 3: -1500 + 3500 = 2000
Suppose r contains a reference to a new rectangle(5, 10, 20, 30). which of the following assignments is legal? (look inside the api documentation to check which interfaces the rectangle class implements.)
a. rectangle a = r;
e. measurable e = r;
b. shape b = r; f. serializable f = r;
c. string c = r; g. object g = r;
d. actionlistener d = r;
The Java Rectangle class implements both the Shape and Serializable interfaces. Therefore, Rectangle r can be legally assigned to Rectangle, Shape, Serializable, and Object data types. It can't be assigned to a String, Measurable, and ActionListener as Rectangle doesn't implement these.
Explanation:In Java, the Rectangle class implements the Shape and Serializable interfaces. Therefore, the legal assignments would be:
Rectangle a = r; because r is a Rectangle, you can assign r to another Rectangle object.Shape b = r; because Rectangle implements the Shape interface, you can assign r to a Shape object.Serializable f = r; because Rectangle implements the Serializable interface, you can assign r to a Serializable object.Object g = r; because all classes in Java extend the Object class implicitly, you can assign r to an Object.The rest assignments are not legal because the Rectangle class doesn't implement Measurable, ActionListener interfaces and it cannot be assigned to a String.
Learn more about Java Rectangle Class here:https://brainly.com/question/14868991
#SPJ6
Find the area of the shaded figure. To do so, subtract the area of the smaller square from the area of the larger square.
Large square side length: (x squared plus 10)
Small square side length: x
Image included.
What is the area of the shaded region?
The area of the shaded figure is (x⁴ + 19x² + 100) square meters after subtracting the area of the smaller square from the area of the larger square.
What is a square?It is defined as a two-dimensional geometry that has four sides and four vertices. The sides of the square are equal in length. It is a regular quadrilateral.
It is given that:
Large square side length: (x squared plus 10)
Small square side length: x
The area of the large square = (x² + 10)(x² + 10)
The area of the large square = (x² + 10)²
The area of the small square = (x)(x)
The area of the small square = x²
The area of the shaded figure = (x² + 10)² - x²
The area of the shaded figure = (x⁴ + 19x² + 100) square meters
Thus, the area of the shaded figure is (x⁴ + 19x² + 100) square meters after subtracting the area of the smaller square from the area of the larger square.
Learn more about the square here:
https://brainly.com/question/14198272
#SPJ2
Prove that f(x) = x^3 – 1000x^2 + x – 1 is ω(x^3) and o(x^3).
To prove that [tex]f(x) = x^3 - 1000x^2 + x - 1[/tex] is [tex]\omega(x^3)[/tex] and [tex]o(x^3)[/tex], we must show how the function grows in comparison to x^3 asymptotically.
To prove that [tex]f(x) = x^3 - 1000x^2 + x - 1[/tex] is [tex]\omega(x^3)[/tex] and [tex]o(x^3)[/tex], we need to show two things:
1. Proving that [tex]f(x) = x^3 - 1000x^2 + x - 1[/tex] is [tex]\omega(x^3)[/tex]
For a function to be [tex]\omega(x^3)[/tex], it needs to grow faster than [tex]x^3[/tex] asymptotically. This requires that the ratio of the function to [tex]x^3[/tex] tends towards infinity as x approaches infinity.
Consider:
[tex]\lim_{x \to \infty}[\frac{f(x)}{x^3} ] = \lim_{x \to \infty}[ \frac{x^3-1000x^2+x-1}{x^3} ][/tex]
Simplify the expression:
[tex]\lim_{x \to \infty}[ 1-\frac{1000}{x}+\frac{1}{x^2}-\frac{1}{x^3} ] =1[/tex]
Since the limit does not tend to infinity but instead tends to 1, f(x) is not ω(x^3). We made a mistake in our earlier assumption; let's correct this in the next point.
2. Proving that [tex]f(x) = x^3 - 1000x^2 + x - 1[/tex] is [tex]o(x^3)[/tex]
To show that f(x) is [tex]o(x^3)[/tex], the ratio of f(x) to [tex]x^3[/tex] should tend to zero as x tends to infinity.
Consider:
[tex]\lim_{x \to \infty} [\frac{f(x)}{x^3}] = \lim_{x \to \infty}[\frac{x^3-1000x^2+x-1}{x^3}][/tex]
Simplify the expression:
[tex]\lim_{x \to \infty}[ 1-\frac{1000}{x}+\frac{1}{x^2}-\frac{1}{x^3} ] =1[/tex]
This indicates that the limit tends to 1 and not 0, hence f(x) is not [tex]o(x^3)[/tex] either. We can see in both cases that the limits did not meet the required criteria for [tex]\omega(x^3)[/tex] or [tex]o(x^3)[/tex], implying a misunderstanding in the problem setup.
Solve the simultaneous equations
5x-4y=19
x+2y=8
A certain airplane has two independent alternators to provide electrical power. the probability that a given alternator will fail on a one-hour flight is 0.019. (a) what is the probability that both will fail? (round your answer to 4 decimal places.) probability (b) what is the probability that neither will fail? (round your answer to 4 decimal places.) probability (c) what is the probability that at least one fails? (round your answer to 4 decimal places.) probability referencesebook & resources
The probability that both alternators fail is approximately 0.0004, the probability that neither fails is approximately 0.9612, and the probability that at least one fails is approximately 0.0388, all rounded to four decimal places.
(a) The probability that both Alternator will fail is calculated by multiplying the probabilities of each failing:
P(Both Fail) = P(Alternator 1 Fails) x P(Alternator 2 Fails) = 0.019 x 0.019 ≈ 0.000361 = 0.0004 (rounded to four decimal places).
(b) The probability that an alternator does not fail is 1 minus the probability that it fails.
P(Neither Fail) = (1 - P(Alternator Fails))^2 = (1 - 0.019)^2 ≈ 0.9612 (rounded to four decimal places).
(c) To find the probability of at least one alternator failing, we subtract the probability of neither failing from 1:
P(At Least One Fails) = 1 - P(Neither Fail) = 1 - 0.9612 ≈ 0.0388 (rounded to four decimal places)
A rainstorm in Portland Oregon wiped out the electricity in 5% of the households in the city. Suppose that a random sample of 60 Portland households is taken after the rainstorm. a. Estimate the number of households in the sample that lost electricity by giving the mean of the relevant distribution (that is the expectation of the relevant random variable do not round your response.) b. Quantify the uncertainty of your estimate by giving the standard deviation of the distribution run your response to at least three decimal places.
What is the value of the range of the function f(x)=x^2+2 for the domain value 1/4?
19+X=17 What is X pls tell me!
How many terms are in the arithmetic sequence 7, 0, −7, . . . , −175?
Hint: an = a1 + d(n − 1), where a1 is the first term and d is the common difference
Select "Rational" or "Irrational" to classify each number. Rational Irrational 0.25 √ 0.25 √0.33
s=n(a1+an)/2 gives the partial sum of an arithmetic sequence. What is the formula solved for an?
A major league baseball pitcher throws a pitch that follows these parametric equations:
x(t) = 143t
y(t) = –16t2 + 5t + 5.
Recall that the speed of the baseball at time t is
s(t)=√ [x '(t)]2 + [y ' (t)]2 ft/sec.
What is the speed of the baseball (in mph) when it passes over homeplate?
The speed of the baseball when it passes over the home plate is 97.67 mph.
Given :
[tex]x(t) = 143t[/tex] ---- (1)[tex]y(t) = -16t^2+5t+5[/tex] ---- (2)The distance between the pitcher's plate and the home plate is 60.5 ft.Differentiate the function x(t) and y(t) with respect to t.
[tex]x'(t)=143[/tex]
[tex]y'(t)= -32t+5[/tex] ---- (3)
Now, put the value of x(t) in equation (1).
60.5 = 143t
t = 0.423 sec
Now, put the value of t in equation (3).
[tex]y'(t) = -32(0.423)+5=-8.536[/tex]
Now, [tex]s(t) = \sqrt{(x'(t))^2+(y'(t))^2}[/tex]
[tex]s(t)=\sqrt{143^2+(-8.536)^2}[/tex]
[tex]\rm s(t)=\sqrt{20521.8633} = 143.2545\;ft/sec[/tex]
[tex]\rm s(t) = 97.67 mph[/tex]
Therefore, the speed of the baseball when it passes over the home plate is 97.67 mph.
For more information, refer to the link given below:
https://brainly.com/question/11897796
Use the distributive property in two different ways to find the product of 127 and 32.
Answer and explanation:
Use the distributive property in two different ways to find the product of 127 and 32.
Distributive property says that,
[tex]a(b+c)=ab+ac[/tex]
We have to find product of 127 and 32,
1) Split 127 as 100+27
[tex]127\times32=(100+27)\times 32[/tex]
Apply distributive property,
[tex]127\times32=100\times 32+27\times 32[/tex]
[tex]127\times32=3200+864[/tex]
[tex]127\times32=4064[/tex]
2) Split 32 as 30+2
[tex]127\times32=127\times (30+2)[/tex]
Apply distributive property,
[tex]127\times32=127\times 30+127\times 2[/tex]
[tex]127\times32=3810+254[/tex]
[tex]127\times32=4064[/tex]
"THIS IS A 90 POINT QUESTION"
A) F IS A INCREASING ON THE INTERVAL X < 0
B) F IS A DECREASING ON THE INTERVAL X < 0
C) F IS A INCREASING ON THE INTERVAL 0 < X < 1
D) F IS A DECREASING ON THE INTERVAL 0 < X < 1
E) F IS A INCREASING ON THE INTERVAL 1 < X < 3
F) F IS A DECREASING ON THE INTERVAL 1 < X < 3
G) F IS A INCREASING ON THE INTERVAL X > 3
H) F IS A DECREASING ON THE INTERVAL X > 3
"SELECT ALL THAT APPLY"
Describe t-test and explain how to interpret its results?
Cours hero a simple random sample of 64 8th graders at a large suburban middle school indicated that 89% of them are involved with some type of after school activity. find the 98% confidence interval that estimates the proportion of them that are involved in an after school activity.
a.[0.799, 0.981]
b.[0.699, 0.931]
c.[0.849, 0.854]
d.[0.799, 0.781]
e.[0.719, 0.981] f) none of the above
Final answer:
Using the formula for the confidence interval of a proportion, and after calculating standard error and margin of error, the 98% confidence interval for the proportion of 8th graders involved in after school activities is [0.799, 0.981]. Therefore, option a is correct.
Explanation:
To find the 98% confidence interval for the proportion of 8th graders involved in some type of after school activity, we can use the formula for the confidence interval of a proportion:
CI = ± z * √((p*(1-p))/n), where p is the sample proportion, n is the sample size, and z is the z-score corresponding to the confidence level.
In this case, we have p = 0.89 (since 89% of the sample is involved in after school activities), n = 64, and for a 98% confidence interval, the z-score (from z-tables or statistical software) is approximately 2.33.
First, let's calculate the standard error (SE): SE = √((0.89*(1-0.89))/64) = √((0.89*0.11)/64) = √(0.0989/64) = 0.0392.
Next, calculate the margin of error (ME): ME = z * SE = 2.33 * 0.0392 = 0.09136.
Now we can calculate the confidence interval: the lower limit is p - ME = 0.89 - 0.09136 = 0.79864 and the upper limit is p + ME = 0.89 + 0.09136 = 0.98136.
After rounding to three decimal places, the 98% confidence interval for the proportion is [0.799, 0.981]. Hence, option a is correct.
What is the area of a parallelogram whose vertices are A(−4, 9) , B(11, 9) , C(5, −1) , and D(−10, −1) ?
Let
[tex]A(-4,9)\\B(11,9)\\C(5,-1) \\D(-10,-1)\\E(-4.-1)[/tex]
using a graphing tool
see the attached figure to better understand the problem
we know that
Parallelogram is a quadrilateral with opposite sides parallel and equal in length
so
[tex]AB=CD \\AD=BC[/tex]
The area of a parallelogram is equal to
[tex]A=B*h[/tex]
where
B is the base
h is the height
the base B is equal to the distance AB
the height h is equal to the distance AE
Step 1
Find the distance AB
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
[tex]A(-4,9)\\B(11,9)[/tex]
substitute the values
[tex]d=\sqrt{(9-9)^{2}+(11+4)^{2}}[/tex]
[tex]d=\sqrt{(0)^{2}+(15)^{2}}[/tex]
[tex]dAB=15\ units[/tex]
Step 2
Find the distance AE
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
[tex]A(-4,9)\\E(-4.-1)[/tex]
substitute the values
[tex]d=\sqrt{(-1-9)^{2}+(-4+4)^{2}}[/tex]
[tex]d=\sqrt{(-10)^{2}+(0)^{2}}[/tex]
[tex]dAE=10\ units[/tex]
Step 3
Find the area of the parallelogram
The area of a parallelogram is equal to
[tex]A=B*h[/tex]
[tex]A=AB*AE[/tex]
substitute the values
[tex]A=15*10=150\ units^{2}[/tex]
therefore
the answer is
the area of the parallelogram is [tex]150\ units^{2}[/tex]
The area of the parallelogram is 0 units.
Explanation:To find the area of a parallelogram, we can use the formula A = base * height. We can find the length of the base by finding the distance between points A and D, which is 11 units. To find the height, we can find the distance between points A and B, which is 0 units. Therefore, the area of the parallelogram is 0 units.
What is 31/2 times 3 1/2