Consider the following systems: I) water behind a dam; II) a swinging pendulum; III) an apple on an apple tree; IV) the space shuttle in orbit. In which of the systems is potential energy present?

Answers

Answer 1

Final answer:

Potential energy is present in water behind a dam and in a swinging pendulum.

Explanation:

In the given systems, potential energy is present in water behind a dam and in the swinging pendulum.

Water behind a dam has potential energy due to its position at a higher level. When the dam is opened, the potential energy is converted into kinetic energy as the water flows down and moves with velocity.

A swinging pendulum also exhibits potential energy. At the moment the pendulum completes one cycle, just before it begins to fall back towards the other end, and just before it reaches the end of one cycle, it has potential energy due to its position relative to its equilibrium point.


Related Questions

Consider a magnetic force acting on an electric charge in a uniform magnetic field. Which of the following statements are true? Check all that apply. Check all that apply. An electric charge moving parallel to the magnetic field experiences a magnetic force. The direction of the magnetic force acting on a moving electric charge in the magnetic field is perpendicular to the direction of motion. An electric charge moving perpendicular to the magnetic field experiences a magnetic force. The magnetic force is exerted on a stationary electric charge in the uniform magnetic field. The direction of the magnetic force acting on a moving charge in the magnetic field is perpendicular to the direction of the magnetic field.

Answers

Answer: 5) "The direction of the magnetic force acting on a moving charge in the magnetic field is perpendicular to the direction of the magnetic field"

3) "An electric charge moving perpendicular to the magnetic field experiences a magnetic force"

Explanation:

When a charge of magnitude q, moving with a velocity v is placed in a magnetic field of strength B, it experiences a force, the magnitude of this force F is given mathematically as

F =qvB sinx

Where x is the angle between the magnetic field and the velocity of the charge.

From this equation, we can see that the force is zero when magnetic field strength B is parallel to velocity (x=0) or when velocity v is zero.

Also the force F is maximum when the angle between magnetic field strength B and velocity is 90 ( that's they are perpendicular).

By the right hand rule, the force, velocity and strength of magnetic field are perpendicular to each other.

These points have made statement 3 and 5 of the questions to be correct.

A 18.5-cm-diameter loop of wire is initially oriented perpendicular to a 1.3-T magnetic field. The loop is rotated so that its plane is parallel to the field direction in 0.18 s . What is the average induced emf in the loop? Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

0.2v

Explanation:

Data given,

Diameter=18.5cm

Hence we can calculate the radius as D/2=18.5/2=9.25cm

radius=9.25cm/100=0.0925m

The area is calculated as

[tex]area=\pi r^{2}\\Area=0.0925^{2}*\pi \\Area=0.02688m^{2}\\[/tex]

magnetic field, B=1.3T

time,t=0.18s

The flux is expressed as

[tex]flux=BAcos\alpha \\[/tex]

since the loop is parallel, the angle is 0

Hence we can calculate the flux as

[tex]flux=1.3*0.02688cos(0)\\flux=0.0349Wb\\[/tex]

to determine the emf induced in the loop, we use Faraday law

[tex]E=-N\frac{d(flux)}{dt}\\ E=-0.0349/0.18\\E=0.19V\\E=-0.2v[/tex]

Note the voltage is not negative but the negative sign shows the current flows in other to oppose the flux

A 5.93 5.93 kg ball is attached to the top of a vertical pole with a 2.03 2.03 m length of massless string. The ball is struck, causing it to revolve around the pole at a speed of 4.25 4.25 m/s in a horizontal circle with the string remaining taut. Calculate the angle, between 0° and 90°, that the string makes with the pole. Take g = 9.81 g=9.81 m/s2.

Answers

Final answer:

To find the angle that the string makes with the pole, we can use the concept of centripetal force. The tension in the string provides the centripetal force that keeps the ball in circular motion.Therefore angle is approximately 45.6°.

Explanation:

To find the angle that the string makes with the pole, we can use the concept of centripetal force. The tension in the string provides the centripetal force that keeps the ball in circular motion.

At the top of the circle, the tension in the string is equal to the weight of the ball, which is given by T = mg. We can use this equation to find the angle the string makes with the pole.

tan(theta) = T/ (m*v²/ R), where m is the mass of the ball, v is the speed of the ball, and R is the length of the string. Plugging in the values given, we get tan(theta) = (5.93 kg * 4.25 m/s²) / (5.93 kg * 9.81 m/s²). Solving for theta, we find that the angle is approximately 45.6°.

Consider a spring that does not obey Hooke’s law very faithfully. One end of the spring is fixed. To keep the spring stretched or compressed an amount x, a force along the x-axis with x-component Fx=kx−bx2+cx3 must be applied to the free end. Here k = 100 N/m, b=700N/m2, and c=12,000N/m3. Note that x < 0 when the spring is stretched and x > 0 when it is compressed. How much work must be done

(a) to stretch this spring by 0.050 m from its unstretched length?
(b) To compress this spring by 0.050 m from its unstretched length?
(c) Is it easier to stretch or compress this spring? Explain why in terms of the dependence of Fx on x. (Many real springs behave qualitatively in the same way.)

Answers

Final answer:

To find the work done when stretching or compressing a non-Hookean spring by 0.050 m, we calculate the definite integral of the force function over the respective intervals. The work done for stretching is the integral from 0 to -0.050 m, and for compression, it is the integral from 0 to 0.050 m. The ease of stretching versus compressing depends on the non-linear force constants.

Explanation:

Work Done to Stretch or Compress a Non-Hookean Spring

To compute the work (W) required to stretch or compress the spring an amount x, we need to integrate the force function Fx = kx - bx2 + cx3 from the unstretched length (0) to the final position (x).

For stretching (x < 0), substitute the given constants (k = 100 N/m, b = 700 N/m2, c = 12,000 N/m3) and integrate from 0 to -0.050 m.

For compression (x > 0), use the same constants and integrate from 0 to 0.050 m.

Analyze the dependence of Fx on x to determine which process (stretching or compressing) requires less work.

The work done for both stretching and compressing can be calculated by evaluating the definite integral of Fx over the interval [0, x].

(a) Work done to stretch:

W = ∫0-0.050 (100x - 700x² + 12,000x3) dx

(b) Work done to compress:

W = ∫00.050 (100x - 700x² + 12,000x3) dx

(c) Comparison of ease:

The comparison is based on the shape of the force-displacement curve. With the given non-linear characteristics, it might be easier or harder to stretch or compress the spring depending on the values of b and c which affect the quadratic and cubic terms, respectively.

The width of a particular microwave oven is exactly right to support a standing-wave mode. Measurements of the temperature across the oven show that there are cold spots at each edge of the oven and at three spots in between. The wavelength of the microwaves is 12 cm . How wide is the oven?

Answers

Answer:

Explanation:

In standing wave pattern we find region of nodes where vibration is minimum or cold spots . The distance between any two consecutive node is half the wave length . There are 5 cold spot or node in between which is equal to 4 half wave length .

width of oven = 4 x half wave length

= 4 x (12 / 2 )

= 24 cm

An isolated charged conducting sphere of radius 11.0 cm creates an electric field of 4.90 ✕ 104 N/C at a distance 20.0 cm from its center. (a) What is its surface charge density?

Answers

Answer:

Surface charge density = 1.43 × 10⁶μC/m²

Explanation:

surface charge density = Q /A_____(1)

where charge Q is the uniformly distributed on surface area A and d surface charge density σ

The electric field due to uniformly charge sphere of charge Q a distance r from the center of the sphere

[tex]E = k\frac{Q}{r^2}[/tex]______(2)

where k is 8.988 × 10⁹N.m²C²

The surface area of the sphere is 4πR² ______(3)

The Capacitance is 4πε₀R

where ε₀ = 8.8542 × 10⁻¹²C/Nm² is a constant

Given that,

R = 11cm = 0.11m

E = 4.90 ✕ 10⁴ N/C

r = 20.0cm = 0.20m

substitute for Q in eqn(2) and for A in eqn(3)

surface charge density = [tex]\frac{Er^2 }{k(4\pi R^2)} \\\frac{(4.9 * 10^4)(0.20)^2}{4\pi (8.988 * 10^9)(0.11)^2 }[/tex]

= 1.43 * 10⁶C/m²

Surface charge density = 1.43 μC/m²

Complete Question:

An isolated, charged conducting sphere of radius 11.0 cm creates an electric field of 4.90×10⁴ N/C at a distance 20.0 cm from its center. (a) What is its surface charge density? (b) What is its capacitance?

Answer:

(a) 1.47 x 10⁻⁶ C/m² or 1.47 μC/m²

(b) 12.07 x 10⁻¹² F  or 12.07 pF

Explanation:

The surface charge density, σ, of a surface (sphere, in this case) of area A which has a charge Q uniformly distributed on it is given by;

σ = [tex]\frac{Q}{A}[/tex]          -----------------(i)

Also, the electric field, E, due to the charge Q, at a distance r, from the center of the sphere to another point on the sphere is given as;

E = k x [tex]\frac{Q}{r^2}[/tex]        --------------(ii)

Where;

k = Coulomb's constant = 8.99 x 10⁹Nm²/C²

(a) i. First calculate the charge on the sphere as follows;

From the question;

r = 20.0cm = 0.20m

E = 4.90 x 10⁴ N/C

Substitute these values into equation (ii) as follows;

4.90 x 10⁴ = 8.99 x 10⁹ x [tex]\frac{Q}{0.20^2}[/tex]

4.90 x 10⁴ = 8.99 x 10⁹ x [tex]\frac{Q}{0.04}[/tex]

4.90 x 10⁴ = 224.75 x 10⁹ x Q

Q = [tex]\frac{4.90*10^4}{224.75*10^9}[/tex]

Q = 0.022 x 10⁻⁵

Q = 0.22 x 10⁻⁶ C

(a) ii. Also calculate the area A, of the sphere as follows;

A = 4π R²

Where;

R = radius of the sphere = 11.0cm = 0.11m

Substitute this value into equation above;

A = 4π (0.11)²             [Take π = 3.142]

A = 4(3.142)(0.0121)

A = 0.15m²

(a) iii. Now calculate the surface charge density, of the sphere as follows;

Substitute the values of A and Q into equation (i) as follows;

σ = [tex]\frac{0.22 * 10^{-6}}{0.15}[/tex]

σ = 1.47 x 10⁻⁶C/m²

Therefore the surface charge density is 1.47 x 10⁻⁶C/m²

==============================================================

(b) The capacitance C, of an isolated charged sphere with radius R, is given by;

C = Aε₀ / R           ----------------(iii)

Where;

R = 11.0cm = 0.11m

A =  area of the sphere = 0.15m²                                 [as calculated above]

ε₀ = permittivity of free space = 8.85 x 10⁻¹² C/Nm²   [a known constant]

Substitute these values into equation (iii) as follows;

C = 0.15 x 8.85 x 10⁻¹² / 0.11

C = 12.07 x 10⁻¹²F

Therefore, the capacitance of the charged sphere is 12.07 x 10⁻¹²F

Kepler deduced this law of motion from observations of Mars. What information confirms his conclusion that the orbit of Mars is elliptical?

Answers

Kepler noticed an imaginary line drawn from a planet to the Sun and this line swept out an equal area of space in equal times, If we then draw a triangle out from the Sun to a planet’s position at one point in time, it is notice that the area doesn't change even after the planet has left the original position say like after 2 to 3days or 2hours. So to have same area of triangle means that the the planet move faster when that are closer to the sun and slowly when they are far from the sun.

This led to Kepler's law of orbital motion.

First Law: Planetary orbits are elliptical with the sun at a focus.

Second Law: The radius vector from the sun to a planet sweeps equal areas in equal times.

Third Law: The ratio of the square of the period of revolution and the cube of the ellipse semi-major axis is the same for all planets.

It is this Kepler's law that makes Newton to come up with his own laws on how planet moves the way they do.

A U-shaped tube open to the air at both ends contains water. A quantity of oil of unknown density is slowly poured into the right arm of the tube until the vertical height of the oil column is 20cm. The top of the oil is 8cm higher than the top of the water. Find the density of the oil.

Answers

Answer:

[tex]\rho_o=600\ kg.m^{-3}[/tex] is the density of the oil

Explanation:

Given:

height of oil column, [tex]h_o=20\ cm[/tex]oil column height that is more than the water column height in the other arm, [tex]\delta h=8\ cm[/tex]

Now from the given it is clear that the height of water column is:

[tex]h_w=h_o-\delta h[/tex]

[tex]h_w=20-8[/tex]

[tex]h_w=12\ cm[/tex]

Now according to the pressure balance condition of fluid columns:

Pressure due to water column = Pressure due to oil column

[tex]P_w=P_o[/tex]

[tex]\rho_w.g.h_w=\rho_o.g.h_o[/tex]

[tex]1000\times 9.8\times 0.12=\rho_o\times 9.8\times 0.2[/tex]

[tex]\rho_o=600\ kg.m^{-3}[/tex] is the density of the oil

Answer:

Explanation:

Let the density of oil is d'.

height of water, h = 20 - 8 = 12 cm

height of oil, h' = 20 cm

density of water, d = 1000 kg/m³

Pressure is balanced

h' x d' x g = h x d x g

0.20 x d' x g = 0.12 x 1000 x g

0.2 d' = 120

d' = 600 kg/m³

An ice cube and a rubber ball are both placed at one end of a warm cookie sheet, and the sheet is then tipped up. The ice cube slides down with virtually no friction, and the ball rolls down without slipping. The ball and the ice cube have the same inertia. Which one reaches the bottom first?

Answers

The ice ball reaches the bottom first, when the sheet is then tipped up. In the given condition, the ball and the ice cube have the same inertia.

What is the friction force?

It is a type of opposition force acting on the surface of the body that tries to oppose the motion of the body. its unit is Newton (N).

Mathematically, it is defined as the product of the coefficient of friction and normal reaction.

The ice ball reaches the bottom first, when the sheet is then tipped up. In the given condition, the ball and the ice cube have the same inertia.

Because the ice cube slides down with virtually no friction. Without friction, an object can easily slide with the more speed.

The ball is spherical in nature and a spherical surface is in more contact with the surface during the inclined motion.

Hence, the ice ball reaches the bottom first, when the sheet is then tipped up.

To learn more about the friction force, refer to the link;

https://brainly.com/question/1714663

#SPJ2

In the lab, you did not include friction in your calculations for the acceleration. Explain why it was not necessary. What would your equation for acceleration look like if you were to include friction

Answers

Final answer:

Friction was not included in the lab calculations because it opposes motion between surfaces, resulting in a smaller acceleration. The equation for acceleration without friction is a = g sinθ, while the equation for acceleration with friction is a = (g sinθ - μk cosθ) / (1 + μk sinθ), where μk is the coefficient of kinetic friction.

Explanation:

The reason friction was not included in the calculations for acceleration in the lab is because friction always opposes motion between surfaces, resulting in a smaller acceleration when it is present. In the absence of friction, all objects slide down a frictionless incline with the same acceleration, regardless of mass. The equation for acceleration without friction is a = g sinθ, where g is the acceleration due to gravity and θ is the angle of the incline.

If friction were to be included in the calculations, the equation for acceleration would be different. It would depend on the coefficient of friction (μ) and the normal force (N) of the object. The equation for acceleration with friction is a = (g sinθ - μk cosθ) / (1 + μk sinθ), where μk is the coefficient of kinetic friction. This equation takes into account the opposing force of friction and provides a more accurate representation of the object's acceleration.

Basidiomycete fungi ballistically eject millions of spores into the air by releasing the surface tension energy of a water droplet condensing on the spore. The spores are ejected with typical speeds of 1.11 m/s, allowing them to clear the "boundary layer" of still air near the ground to be carried away and dispersed by winds, (a) If a given spore is accelerated from rest to 1.11 m/s in 7.40 us, what is the magnitude of the constant acceleration of the spore (in m/s) while being ejected? m/s(b) Find the maximum height of the spore (in cm) if it is ejected vertically. Ignore air resistance and assume that the spore is ejected at ground level. cm(c) Find the maximum horizontal range of the spore (in cm) if it is ejected at an angle to the ground. Ignore air resistance and assume that the spore is ejected at ground level CM

Answers

a) [tex]1.5\cdot 10^5 m/s^2[/tex]

b) 6.3 cm

c) 12.6 cm

Explanation:

a)

The acceleration of an object is the rate of change of its velocity; it is given by:

[tex]a=\frac{v-u}{t}[/tex]

where

u is the initial velocity

v is the final velocity

t is the time interval taken for the velocity to change from u to t

In this problem for the spore, we have:

u = 0 (the spore starts from rest)

v = 1.11 m/s (final velocity of the spore)

[tex]t=7.40\mu s = 7.40\cdot 10^{-6}s[/tex] (time interval in which the spore accelerates from zero to 1.11 m/s)

Substituting, we find the acceleration:

[tex]a=\frac{1.11-0}{7.40\cdot 10^{-6}}=1.5\cdot 10^5 m/s^2[/tex]

b)

Since the upward motion of the spore is a free fall motion (it is subjected to the force of gravity only), it is a uniformly accelerated motion (=constant acceleration, equal to the acceleration due to gravity: [tex]g=9.8 m/s^2[/tex]). Therefore, we can apply the following suvat equation:

[tex]v^2-u^2=2as[/tex]

where:

v = 0 is the final velocity of the spore (when it reaches the maximum height, its velocity is zero)

u = 1.11 m/s is the initial velocity (the velocity at which it is ejected)

[tex]a=-g=-9.8 m/s^2[/tex] is the acceleration (negative because it is downward)

s is the vertical displacement of the spore, which corresponds to the maximum height reached by the spore

Solving for s, we find:

[tex]s=\frac{v^2-u^2}{2a}=\frac{0^2-(1.11)^2}{2(-9.8)}=0.063 m = 6.3 cm[/tex]

c)

If the spore is ejected at a certain angle [tex]\theta[/tex] from the ground, then its motion is a projectile motion, which consists of two independent motions:

- A uniform horizontal motion, with constant horizontal velocity

- A uniformly accelerated motion along the vertical direction (free fall motion)

The horizontal range of a projectile, which can be derived from the equations of motion, is given by:

[tex]d=\frac{v^2 sin(2\theta)}{g}[/tex]

where

v is the initial velocity

[tex]\theta[/tex] is the angle or projection

g is the acceleration of gravity

From the equation, we observe that the maximum range is achevied when

[tex]\theta=45^{\circ}[/tex]

For this angle, the range is

[tex]d=\frac{v^2}{g}[/tex]

For the spore in this problem, the initial velocity is

v = 1.11 m/s

Therefore, the maximum range is

[tex]d=\frac{(1.11)^2}{9.8}=0.126 m = 12.6 cm[/tex]

The slit-to-screen distance is D = 200 cm , and the laser wavelength is 633 nm, use the formula for single-slit diffraction minima to find the slit width a.

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The slit width [tex]a = \frac{2L \lambda}{W}[/tex]

Explanation:

Assuming the unit on the graph is cm

Given that the slit to screen distance is D = 200 cm = 20 000 m

The wavelength [tex]\lambda[/tex]  = 633 nm = [tex]633*10^{-9}m[/tex]

                         slit width a = ?

 The width of the spot that is the width of the peak from the graph is

            W = 1.6 × 2 = 3.2 cm

Where the 1.6 is the distance from 0 to the right  end point of the peak

        The change in y i.e [tex]\Delta y[/tex] has a formula

                         [tex]\Delta y[/tex]  = Ltanθ

An the width of the spot is 2 × [tex]\Delta y[/tex]

                                       W = 2Ltanθ

Applying this formula qsinθ = m[tex]\lambda[/tex]

   where m = 1 because we a focused on the first zeros ,using small angle approximation we have y

              [tex]a\theta = (1) \lambda[/tex]

               [tex]\theta = \frac{\lambda}{a}[/tex]

Substituting this into W = 2ltanθ

         Using small angle approximation

                  W = 2ltanθ = 2Lθ

                  [tex]W = 2L\frac{\lambda}{a}[/tex]

                   [tex]a = \frac{2L \lambda}{W}[/tex] and this is the slit width

A parallel-plate capacitor in air has a plate separation of 1.51 cm and a plate area of 25.0 cm2. The plates are charged to a potential difference of 260 V and disconnected from the source. The capacitor is then immersed in distilled water. Assume the liquid is an insulator.
(a) What is the charge on the plates before immersion?
(b) What is the charge on the plates after immersion?

Answers

Answer:

(a) 380.96 pC

(b) 3.25V

Explanation:

(a) Before immersion,

[tex]C_{air}[/tex] = [tex]\frac{E_{0}A }{d}[/tex]

⇒(8.85E-12× 25E-4× 260) ÷(0.0151)

= 380.96 pC

(b)   Charge on the plates after immersion can be calculated by,

  Q = ΔV×C

      = Δ[tex]V_{air}[/tex] ÷ K

where K is the constant for distilled water

      = 260 ÷ 80

      = 3.25V

Answer:

Explanation:

(a) Charge  on the plates before immersion

as we know that,

C = εA/d

C = 8.85×[tex]10^{-12}[/tex]× 25×[tex]10^{-4}[/tex]/ 1.51×[tex]10^{-2}[/tex]

   = 1.46×[tex]10^{-12}[/tex]

Q = CV

   = (1.46×[tex]10^{-12}[/tex]) (260)

   = 3.796×[tex]10^{-10}[/tex] C

(b) Charge on the plates after immersion

Q = 3.796×[tex]10^{-10}[/tex] C

The charge will remain the same, as the capacitor was disconnected before it was immersed.

Two blocks, joined by a string, have masses of 6.0 kg and 9.0 kg. They rest on a frictionless horizontal surface. A 2nd string, attached only to the 9 kg block, has horizontal force = 30 N applied to it. Both blocks accelerate. Find the tension in the string between the blocks.

Answers

Answer:

Explanation:

30 N force is pulling total mass of 15 kg , so acceleration in the system of masses

= 30 / 15

= 2 m / s²

Let us now consider forces acting on 9 kg . 30 N is pulling it in forward direction . Tension T in the string attached to it is pulling it in reverse direction

so net force on it

30 - T

Applying Newton's law of motion on it

30 - T = mass x acceleration

30 - T = 9  x 2

30 - 18 = T

T = 12 N

Final answer:

Using Newton’s second law, the applied force is used to find the acceleration of the whole system. We then calculate the force (tension) required to move the 6 kg block using this acceleration which is 12N.

Explanation:

In Physics, specifically Newtons’ second law of motion, the tension in the string between the two blocks can be calculated by using the equation F=ma, where F is the force, m is the mass, and a is the acceleration. The force applied on the 9 kg block can be considered to cause an acceleration in the entire system (both blocks) given the fact that they are connected by a string. First, find the acceleration of the whole system by using the formula a = F/total mass = 30N/(9kg+6kg) = 2 m/s². Then, to find the tension in the string between the blocks, we calculate the force required to move the 6 kg block with that acceleration: T = ma = 6kg * 2 m/s² = 12 N. Therefore, the tension in the string between the blocks is 12N.

Learn more about Tension in a string here:

https://brainly.com/question/34111688

#SPJ3

. A 500-Ω resistor, an uncharged 1.50-μF capacitor, and a 6.16-V emf are connected in series. (a) What is the initial current? (b) What is the RC time constant? (c) What is the current after one time constant? (d) What is the voltage on the capacitor after one time constant?

Answers

Answer:

initial current I₀ = 0.0123 A

RC time constant τ = 0.00075 sec

current after one time constant I = 0.00452 A

voltage on the capacitor after one time constant V = 3.89 V

Explanation:

Given that,

Voltage = 6.16 V

Resistance = 500 Ω

Capacitance = 1.5 µF  

(a) What is the initial current?

The initial current can be found using

I₀ = Voltage/Resistance

I₀ = 6.16/500

I₀ = 0.0123 A

(b) What is the RC time constant?

The time constant τ provides the information about how long it will take to charge the capacitor.

τ = R*C

τ = 500*1.5x10⁻⁶

τ = 0.00075 sec

(c) What is the current after one time constant?

I = I₀e^(-τ/RC)

I = 0.0123*e^(-1)   (0.00075/0.00075 = 1)

I = 0.00452 A

(d) What is the voltage on the capacitor after one time constant?

V = V₀(1 - e^(-τ/RC))

Where V₀ is the initial voltage 6.16 V

V = 6.16(1 - e^(-1))

V = 6.16*0.63212

V = 3.89 V

That means the capacitor will charge up to 3.89 V in one time constant

Answer:

Explanation:

Given an RC circuit to analyze

R=500Ω

C=1.50-μF uncharged

Emf(V)=6.16V

Series connection

a. Initial current, since the capacitor is initially uncharged then, the voltage appears at the resistor

Using ohms law

V=iR

Then, i=V/R

i=6.16/500

i=0.01232 Amps

i=12.32 mA.

b. The time constant is given as

τ=RC

τ=500×1.5×10^-6

τ=0.00075second

τ=0.75 ms

c. What is current after 1 time constant

Current in a series RC circuit is given as

Time after I time constant is

t=1 ×τ

t= τ

i=V/R exp(-t/RC)

Where RC= τ

i=V/Rexp(-t/ τ)

i=6.16/500exp(-1), since t= τ

i=0.004532A

I=4.532mA

d. Voltage after one time constant

Voltage of a series RC circuit(charging) is given as

Again, t= τ

V=Vo(1 - exp(-t/ τ)),

V=6.16(1-exp(-1))

V=6.16(1-0.3679)

V=6.16×0.632

V=3.89Volts

V=3.89V

V=

If you shine a laser on two slits with a separation of 0.215 mm, and the diffraction pattern shines on a background 4.90 m away, what is the wavelength of the laser light if the fringes are separated by 1.60 cm

Answers

Answer:

[tex]\lambda = 702\ nm[/tex]

Explanation:

Given,

slit width, d = 0.215 mm

slit separation, D = 4.90 m

Wavelength of the laser light = ?

Fringe width.[tex]\beta = 1.60\ cm[/tex]

Using formula

[tex]\beta =\dfrac{\lambda D}{d}[/tex]

[tex]\lambda=\dfrac{\beta d}{D}[/tex]

[tex]\lambda=\dfrac{0.016\times 0.215\times 10^{-3}}{4.90}[/tex]

[tex]\lambda = 7.02\times 10^{-9}\ m[/tex]

[tex]\lambda = 702\ nm[/tex]

Wavelength of the laser light = [tex]\lambda = 702\ nm[/tex]

An electric field can exist solely due to a source charge. An electric force requires at least two charges, the source charge to set up the field and the test charge to feel the field.

A. TRUE
B. FALSE

Answers

Answer:

TRUE.

Explanation:

The first part of the statement is understood as certain since the definition of the electric field warns that its existence is dependent on the charge of the source. At the same time, we know that for there to be an electric force it is necessary to consider two charges. Either for the generation of the force of repulsion or for the force of attraction.

Final answer:

The statement is true. An electric field can exist due to a single source charge, while an electric force requires a test charge to respond to the field generated by the source charge.

Explanation:

The statement is

TRUE

. The phenomenon takes place within the study of

electromagnetism

. An

electric field

indeed can exist solely due to a source charge. The source charge creates an electric field in the space around it. However, to cause an electric force, there must be at least one other charge (test charge) that is capable of sensing the presence of this field. The greater the source charge, the stronger the electric field. The test charge responds to the field by experiencing a force. The direction of the electric force is the same as the direction of the electric field if the test charge is positive, but opposite if the test charge is negative.

Learn more about Electric Field and Electric Force here:

https://brainly.com/question/30508497

#SPJ12

Two froghoppers sitting on the ground aim at the same leaf, located 35 cm above the ground. Froghopper A jumps straight up while froghopper B jumps at a takeoff angle of 58° above the horizontal.
Which froghopper experiences the greatest change in kinetic energy from the start of the jump to when it reaches the leaf?

Answers

Answer: A

Explanation: We can use the concept of conservation energy which implies that the kinetic energy of the froghoppers equals it potential energy from the ground level.

Where potential energy = mgh

Where m = mass of the object , g = acceleration due gravity and h = height from ground level.

The value of potential energy will reduce when the height is inclined at an angle.

Let us assume equal mass for both froghoppers, say m , g = 10 m/s^2 and a value of h.

For the first froghopper, potential energy = m×9.8×h = 9.8 mh

For the second froghopper, potential energy = m×9.8×hsin58 ( hsin58 is the vertical componet of height h inclined at angle 58),

potential energy = 8.3109 mh

As we can see , froghopper A has more potential energy than froghoppers B which implies that A has more kinetic energy than B

Final answer:

Both froghoppers experience the same change in kinetic energy, as the change in potential energy is the same for both due to reaching the same height.

Explanation:

To determine which froghopper experiences the greatest change in kinetic energy we can consider their jumps from an energy perspective. As both froghoppers are aiming for the same leaf at a height of 35 cm, the change in gravitational potential energy (UG) from the ground to the leaf will be the same for both, since potential energy depends only on the height and mass, which are constant for both froghoppers. Assuming that both froghoppers start at rest (kinetic energy Ki = 0), the change in kinetic energy during the jump (ΔK) will equal the change in potential energy (ΔUG) at the top of their trajectories where their velocity is zero.

If we follow the work-energy principle, the work done by the froghoppers' muscles will convert to potential energy at the peak of their jumps. Thus, the greatest change in kinetic energy will be equivalent to the potential energy gained at the leaf's height, which is same for both, meaning that neither froghopper experiences a greater change in kinetic energy than the other when reaching the leaf. The takeoff angle does not affect the change in kinetic energy in this case since both reached the same height.

A cart traveling at 0.3 m/s collides with stationary object. After the collision, the cart rebounds in the opposite direction. The same cart again traveling at 0.3 m/s collides with a different stationary object. This time the cart is at rest after the collision. In which collision is the impulse on the cart greater?A. The impulses are the same.B. The second collision.C. The first collision.D. Cannot be determined without knowing the mass of the cart.E. Cannot be determined without knowing the rebound speed of the first collision.

Answers

Answer: Impulse is greater in the first case. So, option C is the correct option.

Explanation:

Case 1: Cart is travelling at 0.3 m/s and collide with an stationary object and after collision, cart rebound in opposite direction and another object remains in static condition.

Applying the conservation of linear momentum:

[tex]m_{1} \times u_{1} + m_{2} \times u_{2} = m_{1} \times v_{1} + m_{2} \times v_{2}[/tex]

[tex]m_{1} \times 0.3 + m_{2} \times 0 = m_{1} \times v_{1} + m_{2} \times 0[/tex]

Hence velocity of cart will rebound with the same velocity i.e. 0.3 m/s

Impulse is defined as the change in momentum

Impulse on the cart = [tex]m_{1} \times v_{1} - m_{1} \times u_{1}[/tex] = [tex]m_{1} \times ((-3) - (3)) = m_{1} \times (-6)[/tex] Kg m/s.

Case 2: Initially cart is travelling at 0.3 m/s and after collision it comes to rest.

So, change in momentum or Impulse = [tex]m_{1} \times (0 - 3)[/tex] = [tex]-3 \times m_{1}[/tex] Kg m/s.

Impulse is greater in the first case. So, option C is the correct option.

Answer:

The second impulse is greater then the first impulse.

(B) is correct option.

Explanation:

Given that,

In first case,

Initial speed of cart = 0.3 m/s

Final speed of cart = -0.3 m/s

in second case,

Initial speed of cart = 0.3 m/s

Final speed of cart = 0 m/s

In first case,

We need to calculate the  impulse

Using formula of impulse

[tex]I=\Delta p[/tex]

[tex]I=\Delta (mv)[/tex]

[tex]I=mv-mu[/tex]

Put the value into the formula

[tex]I=m(-0.3-0.3)[/tex]

[tex]I= -0.6m\ kg m/s[/tex]

In second case,

We need to calculate the new impulse

Using formula of impulse

[tex]I'=\Delta (mv')[/tex]

[tex]I'=mv'-mu'[/tex]

Put the value into the formula

[tex]I'=m(0-0.3)[/tex]

[tex]I'= -0.3m\ kg m/s[/tex]

So, I'> I

Hence, The second impulse is greater then the first impulse.

You have a device that takes temperature measurements and runs off of solar power. How often it is programmed to take a measurement will affect how much power it uses--more frequent measurements, more power. You have one installed at the equator and one installed in the Antarctic. During which season of the year can you set each device to take more frequent measurements

Answers

Answer:

In the Equator:

As far as the temperature is concerned equator is more or less the same throughout the year, however, there are some fluctuations also, I will set this device in March and September because, in this month, the Sun is exactly over the equator and I would be able to get the more results in this month.

In Antarctic:

As far as the climatic conditions of Antarctic are concerned, it is all the same while it fluctuates in December because the Sun is very much close to Antarctic that's why I will choose this month.

Explanation:

A 60-Hz single-phase transformer with capacity of 150 kVA has the following parameters: RP = 0.35 Ω RS = 0.002 Ω Rc = 5.2 kΩ XP = 0.5 Ω XS = 0.008 Ω Xm = 1.1 kΩ The primary transformer voltage is 2.8 kV and the secondary is 230 V. The transformer is connected to a variable load (0 to 300 kW) with a lagging power factor of 0.83 and a load voltage equal to the rated transformer secondary. Determine: (a) the total input impedance of the transformer when the secondary is shorted; and (b) the input current, voltage, power and power factor at full load (150 kW). (c) Plot the voltage regulation versus load, and determine the load that produces 5% regulation.

Answers

Final answer:

This answer explains the calculation of turns in a transformer's secondary winding based on given voltage outputs and primary turns, along with determining maximum output currents for different voltage levels.

Explanation:

Input Voltage: 240 V

Primary Coil Turns: 280 turns

Secondary Parts Turns: 5.60 V - 77 turns, 12.0 V - 56 turns, 480 V - 7 turns

Maximum Output Currents: 5.60 V - 5 A, 12.0 V - 2.1 A, 480 V - 0.042 A

Final answer:

The question delves into advanced transformer analysis, focusing on impedance during a short circuit, input parameters at full load, and how voltage regulation varies with load. However, specific calculations for these scenarios are complex and require more detailed analysis beyond the provided data.

Explanation:

The student's question involves a complex analysis of a 60-Hz single-phase transformer under different loading conditions, focusing on electrical parameters such as impedance, current, power, and voltage regulation. It covers several fundamental concepts in electrical engineering, particularly those relating to transformers' performance and efficiency under load.

Total Input Impedance

To calculate the total input impedance when the secondary is shorted, we must consider the impedances in parallel and series as per the equivalent circuit of the transformer. However, given the specific data provided, a direct calculation isn't presented here.

Input Current, Voltage, Power, and Power Factor at Full Load

At full load (150 kW) with a power factor of 0.83 and a secondary voltage of 230 V, the input current, voltage, power, and power factor can be derived from the transformer's ratings and load characteristics. However, to accurately calculate these values, one would typically apply the transformer's equivalent circuit model, considering real and reactive power components.

Voltage Regulation vs. Load

The voltage regulation versus load plot and the determination of the load that produces 5% regulation require an analysis of how the secondary voltage varies with load, against rated conditions. This involves calculations and assumptions not fully detailed in the question.

Which statement below is NOT true about electric field lines?

A) They can start on + charges
B) They are perpendicular to the electric field at every point
C) They get closer together where the field is stronger
D) Field lines cannot cross
E) They can end on - charges

Answers

B

The are parallel to the electric field

Find the force necessary to start the crate moving, given that the mass of the crate is 32 kg and the coefficient of static friction between the crate and the floor is 0.55.

Answers

Final answer:

To find the force necessary to start the crate moving, we use the formula fs(max) = μsN, where fs(max) is the maximum static friction force, μs is the coefficient of static friction, and N is the normal force. Plugging in the given values, the force necessary to start the crate moving is 169.36 N.

Explanation:

The force necessary to start the crate moving is equal to the maximum static friction force. To calculate this, we use the formula:

fs(max) = μsN

where fs(max) is the maximum static friction force, μs is the coefficient of static friction, and N is the normal force. The normal force is equal to the weight of the crate, which can be calculated by N = mg, where m is the mass of the crate and g is the acceleration due to gravity. So, the force necessary to start the crate moving is:

fs(max) = μsN = μsmg

Plugging in the given values:

fs(max) = (0.55)(32 kg)(9.8 m/s²) = 169.36 N



An electron and a proton, moving side by side at the same speed, enter a 0.020-T magnetic field. The electron moves in a circular path of radius9.0 mm. What is the radius of the proton?

Answers

Answer:

16.5 m

Explanation:

Given,

Magnetic field = 0.02 T

radius of electron = 9 mm

speed of electron  = speed of proton

radius of proton = ?

We know,

[tex]F_e = q_e vB[/tex].........(1)

[tex]F_p = q_p vB[/tex]

using newton second law

[tex]F = m a = m\dfrac{v^2}{r}[/tex]

equating Force due to electron and proton

[tex]F_e = F_p[/tex]

[tex]\dfrac{m_ev^2}{r_e}=\dfrac{m_pv^2}{r_p}[/tex]

[tex]\dfrac{m_e}{r_e} = \dfrac{m_p}{r_p}[/tex]

m_ e = 9.1 x 10⁻³¹ Kg    and m_p = 1.67 x 10⁻²⁷ Kg

[tex]r_p = \dfrac{m_p}{m_e}\times r_e[/tex]

[tex]r_p = \dfrac{1.67\times 10^{-27}}{9.1 \times 10^{-31}}\times 9 \times 10^{-3}[/tex]

[tex]r_p = 16.5 m[/tex]

Hence, the radius of proton is equal to 16.5 m.

Blocks A (mass 2.00 kg) and B (mass 6.00 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. (a) Find the maximum energy stored in the spring bumpers and the velocity of each block at that time. (b) Find the velocity of each block after they have moved apart.

Answers

Answer:

av=0.333m/s, U=3.3466J

b.

[tex]v_{A2}=-1.333m/s,\\ v_{B2}=0.667m/s[/tex]

Explanation:

a. let [tex]m_A[/tex] be the mass of block A, and[tex]m_B=10.0kg[/tex] be the mass of block B. The initial velocity of A,[tex]\rightarrow v_A_1=2.0m/s[/tex]

-The initial momentum =Final momentum since there's no external net forces.

[tex]pA_1+pB_1=pA_2+pB_2\\\\P=mv\\\\\therefore m_Av_A_1+m_Bv_B_1=m_Av_{A2}+m_Bv_{B2}[/tex]

Relative velocity before and after collision have the same magnitude but opposite direction (for elastic collisions):

[tex]v_A_1-v_B_1=v_{B2}-v_{A2}[/tex]

-Applying the conservation of momentum. The blocks have the same velocity after collision:

[tex]v_{B2}=v_{A2}=v_2\\\\2\times 2+10\times 0=2v_2+10v_2\\\\v_2=0.3333m/s[/tex]

#Total Mechanical energy before and after the elastic collision is equal:

[tex]K_1+U_{el,1}=K_2+U_{el,2}\\\\#Springs \ in \ equilibrium \ before \ collision\\\\U_{el,2}=K_1-K_2=0.5m_Av_A_1^2-0.5(m_A+m_B)v_2^2\\\\U_{el,2}=0.5\times 2\times 2^2-0.5(2+10)(0.333)^2\\\\U_{el,2}=3.3466J[/tex]

Hence, the maxumim energy stored is U=3.3466J, and the velocity=0.333m/s

b. Taking the end collision:

From a above, [tex]m_A=2.0kg, m_B=10kg, v_A=2.0,v_B_1=0[/tex]

We plug these values in the equation:

[tex]m_Av_A_1+m_Bv_B_1=m_Av_{A2}+m_Bv_{B2}[/tex]

[tex]2\times2+10\times0=2v_A_2+10v_B_2\\\\2=v_A_2+5v_B_2\\\\#Eqtn 2:\\v_A_1-v_B_1=v_{B2}-v_{A2}\\\\2-0=v_{B2}-v_{A2}\\\\2=v_{B2}-v_{A2}\\\\#Solve \ to \ eliminate \ v_{A2}\\\\6v_{B2}=2.0\\\\v_{B2}==0.667m/s\\\\#Substitute \ to \ get \ v_{A2}\\\\v_{A2}=\frac{4}{6}-2=1.333m/s[/tex]

(a) The maximum energy stored in the spring bumpers during the collision is 3.00 J, and the velocity of both the blocks is 0.50 m/s.
(b) After they move apart, block A has a velocity of -1.00 m/s and block B has a velocity of 1.00 m/s.

You can follow these simple steps to find the required solution -

(a) Maximum Energy Stored in the Spring Bumpers

To find the maximum energy stored in the spring bumpers, we will use the conservation of momentum and energy principles.

Initially, block A (mass 2.00 kg) is moving at 2.00 m/s, and block B (mass 6.00 kg) is at rest. The total initial momentum ([tex]p_{initial[/tex]) is:

[tex]p_{\text{initial}} = m_A \cdot v_A + m_B \cdot v_B = 2.00 \, \text{kg} \cdot 2.00 \, \text{m/s} + 6.00 \, \text{kg} \cdot 0 \, \text{m/s} = 4.00 \, \text{kg} \cdot \text{m/s} \\[/tex]

At the point of maximum compression, both blocks momentarily move with the same velocity ([tex]v_{common[/tex]). Using the conservation of momentum:

[tex]p_{\text{final}} = (m_A + m_B) \cdot v_{\text{common}} = 4.00 \, \text{kg} \cdot \text{m/s} \\[/tex]

Solving for [tex]v_{common[/tex]:

[tex]v_{\text{common}} = \frac{4.00 \, \text{kg} \cdot \text{m/s}}{2.00 \, \text{kg} + 6.00 \, \text{kg}} = 0.50 \, \text{m/s} \\[/tex]

Next, determine the initial kinetic energy ([tex]KE_{initial[/tex]):

[tex]KE_{\text{initial}} = 0.5 \cdot m_A \cdot (v_A)^2 + 0.5 \cdot m_B \cdot (v_B)^2 = 0.5 \cdot 2.00 \, \text{kg} \cdot (2.00 \, \text{m/s})^2 + 0.5 \cdot 6.00 \, \text{kg} \cdot (0 \, \text{m/s})^2 = 4.00 \, \text{J} \\[/tex]

The kinetic energy at the point of maximum compression ([tex]KE_{final[/tex]) is:

[tex]KE_{\text{final}} = 0.5 \cdot (m_A + m_B) \cdot (v_{\text{common}})^2 = 0.5 \cdot 8.00 \, \text{kg} \cdot (0.50 \, \text{m/s})^2 = 1.00 \, \text{J} \\[/tex]

The maximum energy stored in the spring bumpers ([tex]E_{spring[/tex]) is the difference between [tex]KE_{initial[/tex] and [tex]KE_{final[/tex]:

[tex]E_{\text{spring}} = KE_{\text{initial}} - KE_{\text{final}} = 4.00 \, \text{J} - 1.00 \, \text{J} = 3.00 \, \text{J} \\[/tex]

(b) Velocity of Each Block After Collision

After they have moved apart, assuming an elastic collision where both kinetic energy and momentum are conserved, the final velocities ([tex]v_A_{final[/tex] and [tex]v_B_{final[/tex]) can be found using the respective equations:

For block A:

[tex]v_{A_{\text{final}}} = \frac{(m_A - m_B)}{(m_A + m_B)} \cdot v_{A_{\text{initial}}} + \frac{(2 \cdot m_B)}{(m_A + m_B)} \cdot v_{B_{\text{initial}}} \\[/tex][tex]v_{A_{\text{final}}} = \frac{(2.00 \, \text{kg} - 6.00 \, \text{kg})}{(2.00 \, \text{kg} + 6.00 \, \text{kg})} \cdot 2.00 \, \text{m/s} + \frac{(2 \cdot 6.00 \, \text{kg})}{(2.00 \, \text{kg} + 6.00 \, \text{kg})} \cdot 0 \, \text{m/s} = -1.00 \, \text{m/s} \\[/tex]

For block B:

[tex]v_{B_{\text{final}}} = \frac{(2 \cdot m_A)}{(m_A + m_B)} \cdot v_{A_{\text{initial}}} + \frac{(m_B - m_A)}{(m_A + m_B)} \cdot v_{B_{\text{initial}}} \\[/tex][tex]v_{B_{\text{final}}} = \frac{(2 \cdot 2.00 \, \text{kg})}{(2.00 \, \text{kg} + 6.00 \, \text{kg})} \cdot 2.00 \, \text{m/s} + \frac{(6.00 \, \text{kg} - 2.00 \, \text{kg})}{(2.00 \, \text{kg} + 6.00 \, \text{kg})} \cdot 0 \, \text{m/s} = 1.00 \, \text{m/s} \\[/tex]

Therefore, the final velocities are:

[tex]v_{A_{\text{final}}} = -1.00 \, \text{m/s} \quad \text{and} \quad v_{B_{\text{final}}} = 1.00 \, \text{m/s}[/tex]

The rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3 × 10-11 e-250/T and 2 × 10-12 e-940/T, where T is the Kelvin temperature. Calculate the ratio of the rates of ozone destruction by these catalysts at 20 km, given that at this altitude the average concentration of OH is about 100 times that of Cl and that the temperature is about -50 °C. Calculate the rate constant for ozone destruction by chlorine under conditions in the Antarctic ozone hole, when the temperature is about -80 °C and the concentration of atomic chlorine increases by a factor of one hundred to about 4 × 105 molecules cm-3.

Answers

Answer:

Calculate the ratio of the rates of ozone destruction by these catalysts at 20 km, given that at this altitude the average concentration of OH is about 100 times that of Cl and that the temperature is about -50 °C

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x[tex]10^{-11} e^{-255/T}[/tex]  and 2x[tex]10^{-12} e^{-940/T}[/tex]  

T = -50 °C = 223 K

The reaction rate will be given by [Cl] [O3] 3x[tex]10^{-11} e^{-255/223} = 9.78^{-12} [Cl] [O3][/tex]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x[tex]10^{-12} e^{-940/223} = 2.95^{-14} [OH] [O3][/tex]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 330 * [Cl] / [OH]

Than, the concentration of OH is approximately 100 times of Cl, and the result will be that the reaction with Cl is 3.3 times faster than the  reaction with OH

Calculate the rate constant for ozone destruction by chlorine under conditions in the Antarctic ozone hole, when the temperature is about -80 °C and the concentration of atomic chlorine increases by a factor of one hundred to about 4 × 105 molecules cm-3

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x[tex]10^{-11} e^{-255/T}[/tex]  and 2x[tex]10^{-12} e^{-940/T}[/tex]  

T = -80 °C = 193 K

The reaction rate will be given by [Cl] [O3] 3x[tex]10^{-11} e^{-255/193} = 8.21^{-12} [Cl] [O3][/tex]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x[tex]10^{-12} e^{-940/193} = 1.53^{-14} [OH] [O3][/tex]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 535 * [Cl] / [OH]

Than, considering the concentration of Cl increases by a factor of 100 to about 4 × [tex]10^{5}[/tex] molecules [tex]cm^{-3}[/tex], the result will be that the reaction with OH will be 535 + (100 to about 4 × [tex]10^{5}[/tex] molecules [tex]cm^{-3}[/tex]) times faster than the  reaction with Cl

Explanation:

a wave is 8 meters long and has a frequency of 3 Hz. Find speed

Answers

Answer:

The speed is 24 [tex]\frac{meter}{s}[/tex]

Explanation:

A wave is a disturbance that propagates through a certain medium or in a vacuum, with transport of energy but without transport of matter.

The wavelength is the minimum distance between two successive points of the wave that are in the same state of vibration. It is expressed in units of length (m).

Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).

The speed of propagation is the speed with which the wave propagates in the middle, that is, the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate wavelength (λ) and frequency (f) inversely proportionally using the following equation:

v = f * λ.

In this case, λ= 8 meter and f= 3 Hz

Then:

v= 3 Hz* 8 meter

So:

v= 24 [tex]\frac{meter}{s}[/tex]

The speed is 24 [tex]\frac{meter}{s}[/tex]

The speed of the wave is 24 m/s.

To find the speed of a wave, you can use the relationship between speed, frequency, and wavelength.

The formula is:

Speed (v) = Wavelength (λ) × Frequency (f)

Given in this problem:

Wavelength (λ) = 8 metersFrequency (f) = 3 Hz

We substitute these values into the formula:

Speed (v) = 8 meters × 3 Hz

Thus, the speed of the wave is:

v = 24 m/s

You throw a football straight up. Air resistance can be neglected. (a) When the football is 4.00 m above where it left your hand, it is moving upward at 0.500 m/s. What was the speed of the football when it left your hand

Answers

Final answer:

To find the initial speed of the football, you can use the kinematic equation. Given that the football is moving upward at 0.500 m/s and the displacement is 4.00 m, the equation can be used to find the initial velocity.

Explanation:

To find the initial speed of the football, we can use the kinematic equation that relates the final velocity, initial velocity, acceleration, and displacement: vf = vi + at. Given that the football is moving upward at 0.500 m/s and the displacement is 4.00 m, we can plug in the values to solve for the initial velocity:

0.500 m/s = vi + (-9.8 m/s2) x t

Since the football is thrown straight up, the acceleration due to gravity is negative. Let's assume the time taken for the football to reach a height of 4.00 m is t. Since the football goes up and then comes back down, the time taken to reach the height of 4.00 m in the upward direction will be half of the total time. Let's call this time tu. Since the motion is symmetric, the time taken to reach the height of 4.00 m on the way down will also be tu. Therefore, the total time taken for the football's motion is 2tu.

Given that the total time is 2tu, we can substitute it into the equation:

0.500 m/s = vi + (-9.8 m/s2) x 2tu

Now, we can solve for vi by isolating it:

vi = 0.500 m/s - (-9.8 m/s2) x 2tu

Since the time taken for the motion is unknown, we cannot determine the precise initial velocity without more information.

Learn more about initial velocity here:

https://brainly.com/question/37003904

#SPJ3

A thin-walled cylindrical steel water storage tank 30 ft in diameter and 62 ft long is oriented with its longitudinal axis vertical. The tank is topped with a hemispherical steel dome. The wall thickness of the tank and dome is 0.68 in. If the tank is pressurized to 55 psig and contains water 55 ft above its base, and considering the weight of the tank, determine the maximum state of stress in the tank and the corresponding principal stresses (normal and shear). The weight density of water is 62.4 lbf/ft3.

Answers

Answer:

ρ

=

55.0

π

15.0

2

62.0

Explanation:

The vertical displacement of an ocean wave is described by the function, y = A sin(ωt - kx). k is called the wave number (k = 2π/λ) and has a value of k = 18 rad/m. The remaining values are A = 9.5 m and ω = 14.5 rad/s.

a) Using y = A sin(B), input an expression for B where the wave would be traveling in the -x-direction. sig.gif?tid=7M79-31-9F-4E-8624-20536

b) What is the wave's velocity in m/s?

c) What is the wave's amplitude in m?

Answers

Final answer:

The expression for B for a wave traveling in the -x direction is B = ωt - kx + π. The wave velocity is 0.805 m/s and the wave amplitude is 9.5 m.

Explanation:

To determine the expression for B where the wave would be traveling in the -x direction, we need to consider that the general equation for the wave function is y = A sin(B). In this case, the wave is traveling in the -x direction, which means the phase of the wave is shifted by π (180 degrees). So the expression for B would be B = ωt - kx + π.

The wave's velocity can be calculated using the formula v = ω/k. Substituting the given values, the wave's velocity is v = 14.5 rad/s / 18 rad/m = 0.805 m/s.

The wave's amplitude is given directly as A = 9.5 m.

Other Questions
The number of views of a page on a Web site follows aPoisson distribution with a mean of 1.5 per minute.a. What is the probability of no views in a minute?b. What is the probability of two or fewer views in10 minutes?c. Does the answer to the previous part depend on whetherthe 10-minute period is an uninterrupted interval? Explain.d. Determine the length of a time interval such that the probabilityof no views in an interval of this length is 0.001. You are watching people practicing archery when you wonder how fast an arrow is shot from a bow. With a flash of insight you remember your physics and see how you can easily determine what you want to know by a simple measurement. You ask one of the archers to pull back her bow string as far as possible and shoot an arrow horizontally. The arrow strikes the ground 107 feet from the archer making an angle of 3 degrees below the horizontal. What is the initial speed of the arrow? Sue was driving along and texting her new boyfriend, not paying attention to her surroundings. She came up to a stop sign and rather than stop, went right through it. Little Johnny was about to cross the street in front of Sue when he saw her driving fast so he hesitated and was not physically injured. Sue committed a tort by running the stop sign even though no one was injured. True or False? You are required to come up with a single header file (IntList.h) that declares and implements the IntNode class (just copy it exactly as it is below) as well as declares the IntList Class interface only. You are also required to come up with a separate implementation file (IntList.cpp) that implements the member functions of the IntList class. While developing your IntList class you must write your own test harness (within a file named main.cpp).Never implement more than 1 or 2 member functions without fulling testing them with your own test harness. IntNode struct I am providing the IntNode class you are required to use. Place this class definition within the IntList.h file exactly as is. Make sure you place it above the definition of your IntList class. Notice that you will not code an implementation file for the IntNode class. The IntNode constructor has been defined inline (within the class declaration). Do not write any other functions for the IntNode class. Use as is.struct IntNode {int data;IntNode *next;IntNode(int data) : data(data), next(0) {} };IntList class Encapsulated (Private) Data Fieldshead: IntNode *tail: IntNode *Public Interface (Public Member Functions)IntList(): Initializes an empty list.~IntList(): Deallocates all remaining dynamically allocated memory (all remaining IntNodes). void display() const: Displays to a single line all of the int values stored in the list, each separated by a space. This function does NOT output a newline or space at the end.void push_front(int value): Inserts a data value (within a new node) at the front end of the list.void pop_front(): Removes the value (actually removes the node that contains the value) at the front end of the list. Does nothing if the list is already empty.bool empty() const: Returns true if the list does not store any data values (does not have any nodes), otherwise returns false. main.cpp test harness for labUse this main.cpp file for testing your IntList:. #include using namespace std; #include "IntList.h" int main() {//tests constructor, destructor, push_front, pop_front, display { cout When its 75 kW (100 hp) engine is generating full power, a small single-engine airplane with mass 700 kg gains altitude at a rate of 2.5 m/s (150 m/min, or 500 ft/min). What fraction of the engine power is being used to make the airplane climb Two lines intersect to form the angles shown.Which statements are true?Select each correct answer.m How many ounces are in 1 cup?1)The unit rate isounces per cup. An inexperienced accountant for Huang Company made the following errors in recording merchandising transactions. 1. A $195 refund to a customer for faulty merchandise was debited to Sales Revenue $195 and credited to Cash $195. 2. A $180 credit purchase of supplies was debited to Inventory $180 and credited to Cash $180. 3. A $215 sales discount was debited to Sales Revenue. 4. A cash payment of $20 for freight on merchandise purchases was debited to Freight-Out $200 and credited to Cash $200. Prepare separate correcting entries for each error, assuming that the incorrect entry is not reversed. Professor Carr studies dreaming and is a strong proponent of the neurocognitive theory of dreams. If he is only interested in studying vivid dreams with strong story lines, he should probably only use participants who are:________. How does the Supreme Court decide which cases to review each year?A. It grants writs of certiorari to all cases that come before it on appeal.B. It grants writs of certiorari to some of the cases it believes to be ofnational importance.C. It grants writs of certiorari to all cases recommended to it by thePresident of the United States.D. It grants writs of certiorari to most of those cases on which the U.S.Circuit Courts are already in general agreement. At the end of the isomerization reaction, what chemical is used to quench the residual bromine?At the end of the isomerization reaction, what chemical is used to quench the residual bromine? What are the key appeals on which the writers of the American Revolution based their arguments? Who is the writer of the following excerpt?"In this harvesting of pearls, let us again consider whether the Spaniards preserve the divine concepts of love for their fellow man, when they place the bodies of the Indians in such mortal danger, and their souls, too, for these pearl divers perish without the holy sacraments. And it is solely because of the Spaniards greed for gold that they force the Indians to lead such a life " Translate six minutes less then bobs time in a algebraic expression A young couple went to see a genetic counselor because each had a sibling affected with cystic fibrosis. (recessive disease, neither member of the couple is affected. Their four parents are also not affected))(a) What is the probability that the female of this couple is a carrier?(b) What are the chances that their child will be affected with cystic fibrosis?(c) What is the probability that their child will be a carrier of the cystic fibrosis mutation? Find the center of the circle whose equation is (x-2)^2(y-4)^2=9.A.(-2,-4)B.(2,4)C.(4,2) Until recently, Jerry had always enjoyed being on his high school debate team, which had won several awards. But yesterday, as Jerry prepared for next weeks event, he began to experience a heightened sense of nervousness. He noticed tightness in his chest and he felt dizzy. He had difficulty controlling his rapid breathing and began to feel an intense need to go outside for air. It is most likely that Jerry was experiencing symptoms of:_______.1. obsessive-compulsive disorder.2. a panic attack.3. agoraphobia.4. post-traumatic stress disorder. The unrest reflected in the image is best explained by which of the following features of the Russian government at the time of the photograph? CollegeBoard Unit 7 AP World History A certain forest covers an area of 8.25%. Suppose that each year this area decreases by 4800km^2. What will the area be after 5 years? What are the benefits and limitation of using point of care testing in a suburban general practice to the patient and to the general practitioner? Steam Workshop Downloader