Answer:
90 Degrees
Step-by-step explanation:
The find the measure of that angle, find the measure of it's intercepted arc, which is already given as 180. When you find the measure of the intercepted arc, to find the measure of the angle/ divide the measure of the intercepted arc by 2, since the angle is on the circle and boom you get 90 degrees
Which of these is an example of a non-random sample?
A.
A cereal company surveys their employees about breakfast food preference.
B.
A farmer is choosing grains of wheat from a field to test for a new flavor of cereal.
C.
Ten college students at a college, population 50,000, are chosen to taste test a new cereal.
D.
A cereal company puts a winning ticket in one box of cereal out of 100,000 boxes.
I would go for C ten college students are chosen to taste test a new cereal
Water and orange squash is mixed in the ratio 5 : 1
Find how much water is needed to dilute 120 cl of orange squash.
Answer:
600 cl
Hope this helps :)
Have a great day !
5INGH
Step-by-step explanation:
5 : 1
We know that there is 120 cl of orange squash so
( Water : orange squash )
5 : 1
? : 120
We are multiplying by 120 to get from 1 to 120 so we must multiply by 120 to get from 5 to ?.
So,
5 × 120 = 600
Answer:
600 cl
Step-by-step explanation:
1 unit of orange = 5 units of water
120 units of oranges = 120 x 5 = 600 units of water
600 units of water = 600 cl of water
Which reason validates the statement: "The diagonals of a rectangle are congruent"
A. Distance formula to prove AD and BC are congruent.
B. Distance formula to prove AB and CD are congruent.
C. Slope formula proving A,B,C,D are all right angles.
D. Distance formula to prove AC and BD are congruent.
Final answer:
The correct answer is D. Distance formula to prove AC and BD are congruent, as this explains why the diagonals of a rectangle, AC and BD, are always the same length.
Explanation:
The question asks which reason validates the statement: "The diagonals of a rectangle are congruent." The correct answer is D. Distance formula to prove AC and BD are congruent. In a rectangle, the diagonals are always congruent because they connect opposite corners and because a rectangle is a parallelogram, where opposing sides are equal and parallel, making the trip from one corner to the opposite across the shape the same distance, regardless of the starting and ending points. This is proven using the distance formula, which calculates the distance between two points in a coordinate plane. The diagonal AC and diagonal BD represent these distances in a rectangle.
what value of r makes this equation true? justify your solution.
0.4r - 7 = -.3r +2.8
The answer is 14
0.4r-7=-.3r+2.8
Add 7 to both sides. -7+7=0 so it cancels on the left. 2.8+7=9.8.
0.4r=-.3r+9.8.
Add .3r to both sides. -.3r+3r=0 so it cancels on the right. 0.4r+.3r=0.7r.
0.7r=9.8
Divide 0.7 to both sides. 9.8 divided by 0.7 = 14
So r=14
Answer:
all work is pictured and shown
How do you calculate the area of a circle?
Area of a circle is equal to the diameterdiameter squaredradiusradius squared times diameterheightpiwidth.
Answer:
[tex]Area of circle = \pi (radius)^2 =\pi (r)^2[/tex]
Step-by-step explanation:
We need to find about how to calculate the area of a circle.
And match with the given choices. Where given choices are:
Area of a circle is equal to the diameterdiameter
squaredradiusradius squared times diameterheightpiwidth.
I'm not sure what exactly you have typed lol :)
But I can still answer that.
You just need to apply formula of the area of circle which is given by:
[tex]Area of circle = \pi (radius)^2 =\pi (r)^2[/tex]
Answer:
radius squared times pi
Step-by-step explanation:
edge
Ms. Campbell recorded the number of cars each salesperson at her dealership sold last week.
Which of these statements is true?
A. The mean of the data summarizes the number of cars each salesperson sold last week.
B. The interquartile range of the data describes the change in the total number of cars sold last week.
C. The mean absolute deviation of the data summarizes the number of cars each salesperson sold last week.
D. The median of the data describes how the number of cars sold last week by each salesperson varies.
Answer:
the answer is A
Step-by-step explanation:
a measure of center for a numerical data set summarizes all of its' values with a single number; man and median are measures of center
a measure of variation describes how the numerical data varies with a single number; interquartile range and mean absolute deviation are measures of variation
***so the mean of the data summarizes the number of cars each salesperson sold last week***
If (-3, y) lies on the graph of y = 3x, then y =
1/27
-1
-27
Answer:
y =1/27
Step-by-step explanation:
Howdy!
If P = (-3, y) lies on the graph of y=3^x, then, to find the value of 'y' we need to substitute the point P into the equation:
To solve this, remember that [tex]a^{-b} = \frac{1}{a^{b}}[/tex]
Then:
y = 3^x
y = 3^(-3)
y = 1/27
So P= (-3, 1/27)
The correct option is y =1/27
Answer:
The correct answer option is 1/27.
Step-by-step explanation:
We are given the following equation and we are to find the value of y when the point (-3, y) lies on the graph of the given equation:
[tex] y = 3 ^ { x } [/tex]
So we will substitute the given value of x from the point (-3, y) in the equation to get y:
[tex] y = 3 ^ { - 3 } [/tex]
[tex] y = \frac { 1 } { 2 7 } [/tex]
please help
For the system shown below what are the coordinates of the solution that lies in quadrant II? write your answer in form (a,b) without using spaces.
x^2+4y^2=100
4y-x^2=-20
Answer:
(-6,4)
Step-by-step explanation:
The equations are:
[tex]x^2+4y^2=100\\4y-x^2=-20[/tex]
Solving for x^2 of the 2nd equation and putting that in place of x^2 in the 2nd equation we have:
[tex]4y-x^2=-20\\x^2=4y+20\\-------\\x^2+4y^2=100\\4y+20+4y^2=100[/tex]
Now we can solve for y:
[tex]4y+20+4y^2=100\\4y^2+4y-80=0\\y^2+y-20=0\\(y+5)(y-4)=0\\y=4,-5[/tex]
So plugging in y = 4 into an equation and solving for x, we have:
[tex]x^2=4y+20\\x=+-\sqrt{4y+20} \\x=+-\sqrt{4(4)+20} \\x=+-\sqrt{36} \\x=6,-6[/tex]
So y = 4 corresponds to x = 6 & x = -6
The pairs would be
(6,4) & (-6,4)
we see that (-6,4) falls in the 2nd quadrant, thus this is the solution we are looking for.
Solve the equation using the zero product property -2x(5x-2)=0
X=0,2/5
X=0,2
X=0,-2/5
X=0,-2
Answer:
A
Step-by-step explanation:
Given
- 2x(5x - 2) = 0
Equate each factor to zero and solve for x
- 2x = 0 ⇒ x = 0
5x - 2 = 0 ⇒ 5x = 2 ⇒ x = [tex]\frac{2}{5}[/tex]
Solutions are
x = 0, x = [tex]\frac{2}{5}[/tex]
point o is the center if the circle. what is the value of x? mn and mp are tangent to
114
26
66
57
Answer:
[tex]x=66[/tex]
Step-by-step explanation:
Since MN and MP are tangent to circle O, they create 90° angles at the points of intersection.
We also know that this is a quadralateral, so the interior angles add up to 360.
We can make an equation with this information.
[tex]114+90+90+x=360[/tex]
[tex]294+x=360[/tex]
[tex]x=66[/tex]
By property of tangent, the value of x is Option(C) 66° .
What are the properties of tangent ?The properties of tangent are as follows -
Any tangent when intersect to a circle at the point, it subtends an angle of 90° at the interior segment. The total sum of the interior angle of the intersection of tangent at the points is always equal to 360° . How to find the given angle in the triangle ?Given that point O is the center if the circle also given MN and MP are tangent to O.
Thus by the property of tangent, ∠OPM and ∠ONM is equal to 90° as both the tangents intersect at the points P and N .
Also from property, we know that -
⇒ ∠ONM + ∠OPM + 114° + x° = 360°
⇒ 90° + 90° + 114° + x° = 360°
⇒ 294° + x° = 360°
∴ x = 360° - 294° = 66°
Therefore, by property of tangent, the value of x is Option(C) 66° .
To learn more about property of tangent, refer -
https://brainly.com/question/8705027
#SPJ2
what is the value of y2 - x2 when y = 6 and x = 5
When y = 6 and x = 5, the value of [tex]\( y^2 - x^2 \)[/tex] is 11.
To find the value of [tex]\( y^2 - x^2 \)[/tex] when y = 6 and x = 5, you simply substitute these values into the expression and calculate.
[tex]y^2-x^2=(6)^2-(5)^2\\=36-25\\=11[/tex]
Liang is ordering new chairs and cushions for his dining room table A new chair cost $88 and a new cushion cost $12 shipping costs $34 expression 88c + 12c + 34 gives the total cost for buying C sets of chairs and cushions simplify The expression by combining like terms
Answer:
100c + 34
Step-by-step explanation:
100c+4 that’s the answer
What is the name of the Platonic solid shown below
Answer:
C.
Step-by-step explanation:
A hexahedron has 6 equal sides. Like the cube shown.
The name of the platonic solid shown is hexahedron.
What are different types of solids?Tetrahedron - A tetrahedron, also referred to as a triangle pyramid, is a polyhedron with four triangular faces, six straight edges, and four vertex corners in geometry.
Hexahedron - Any polyhedron with six faces is called a hexahedron.
Octahedron - An octahedron is a polyhedron with eight faces in geometry.
Dodecahedron - In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces
The figure given in the question has clearly six flat faces and hence according to the definitions it is a hexahedron.
Learn more about shapes on:
https://brainly.com/question/303508
#SPJ2
Math
Can someone please explain what I need to do here to find answer?
Thanks
Answer:
C
Step-by-step explanation:
First of all their is an easier way solving this 2l/ + l^2
but how you need it is c because the base is 100 and each face is 40 how 10x8=80 80/2=40
how to solve this. it’s for angles
Answer:
x=36
Step-by-step explanation:
The angle right under 3x is 2x, because alternate exterior angles between parallel lines are equal. Those two angles add up to 180, because they are formed by a strait line intersecting with another straight line. This means that 5x = 180 or x=36.
PLEASE SOMEONE HELP ME I WILL GIVE YOU EVERY POINT POSSIBLE
Answer:
[tex] log_{b}( {m}^{p} ) = p \: log_{b}(m) [/tex]
What is the range of the function, f(x)=3x+4, given the domain is {-2, 4,,10, 16}
Select one:
a. {-2, 19, 40, 58}
b. {-2, 0, 2, 4}
c. {-2, 4, 8, 13}
d. {-2, 16, 34, 52}
Answer:
The range of f(x) is {-2 , 16 , 34 , 52} ⇒ answer d
Step-by-step explanation:
* Lets talk about the domain and the range of a function
- The domain is the values of x (input)
- The range is the value of y of the corresponding x (output)
∵ f(x) = 3x + 4
∵ The domain is {-2 , 4 , 10 , 16}
- To find the corresponding range substitute the values of x in f(x)
∵ x = -2
- Substitute x by -2 in f(x)
∴ f(-2) = 3(-2) + 4 = -6 + 4 = -2
∵ x = 4
- Substitute x by 4 in f(x)
∴ f(4) = 3(4) + 4 = 12 + 4 = 16
∵ x = 10
- Substitute x by 10 in f(x)
∴ f(10) = 3(10) + 4 = 30 + 4 = 34
∵ x = 16
- Substitute x by 16 in f(x)
∴ f(16) = 3(16) + 4 = 52
∴ The range of f(x) is {-2 , 16 , 34 , 52}
6 cm
4 cm
10 cm
Note: Figure is not drawn to scale.
What is the volume of the pencil holder?
A.
240 cubic centimeters
OB. 60 cubic centimeters
C.
120 cubic centimeters
D.
200 cubic centimeters
The volume of the pencil holder with dimensions 6 cm, 4 cm, and 10 cm is 240 cubic centimeters, as calculated using the formula for the volume of a rectangular prism.
Explanation:To calculate the volume of a rectangular pencil holder with the given dimensions of 6 cm, 4 cm, and 10 cm, the formula for the volume (V) of a rectangular prism should be used, which is:
V = length × width × height
Substitute the given measurements into the formula:
V = 6 cm × 4 cm × 10 cm = 240 cm³
Therefore, the volume of the pencil holder is 240 cubic centimeters.
Are the triangles similar why or why not
Answer:
Yes
Step-by-step explanation:
Yes because all three sides have the same ratio
1) if 40 sheets of paper cost $2.40 how much would 80 sheets cost
2)if 25 sheets cost $2.00 how much would 80 sheets cost
3)if 15 sheets cost $1.60 how much would 880 sheets cost
Answer:
1. Cost of 80 sheets of paper = $ 4.8
2. Cost of 80 sheets of paper = $ 6.4
3. Cost of 880 sheets of paper = $ 93.8
Step-by-step explanation:
1) if 40 sheets of paper cost $2.40 how much would 80 sheets cost
Solution:
Price of 40 sheets of paper = $2.40
Price of 1 sheet of paper = 2.40/40
Price of 80 sheets of paper = (2.40/40)*80
= $ 4.8
2)if 25 sheets cost $2.00 how much would 80 sheets cost
Price of 25 sheets of paper = $2.00
Price of 1 sheet of paper = 2.00/25
Price of 80 sheets of paper = (2.00/25)*80
= $ 6.4
3)if 15 sheets cost $1.60 how much would 880 sheets cost
Price of 15 sheets of paper = $1.60
Price of 1 sheet of paper = 1.60/15
Price of 880 sheets of paper = (1.60/15)*880
= $ 93.8
what is the diffrenc e between a 1 1/4 and 3/8
Answer:
7/8
Step-by-step explanation:
Answer:
7/8
Step-by-step explanation:
mona wrote 7 tests. her average was 93 what is the lowest grade she can get for her average to be 90
15 POINTS AND THANKS
Answer:
69
Step-by-step explanation:
To find the total sum of all the tests, you multiply 93 by 7 or 651. Multiplying 90 and 8, you get 720. So 720-651 is 69.
I really really need help
I'm pretty sure the answer is Ronald. It might be Dennis though.
Find the center and radius of the circle x2 - 22x + y2 + 20y =4
Answer:
x² - 22x + y² + 20y = 4
x² - 22x + 121 + y² + 20y + 100 = 225
(x - 11)² + (y + 10)² = 15²
Center: (11, -10)
Radius: 15
Sup everybody so I have a question for you guys today.
How many times shorter is one inch than one foot?
11 inches...............
there are 12 inches in 1 foot, so one inch is twelve times shorter.
5,000 is 1/10 of blank
Answer:
blank = 50,000
Step-by-step explanation:
At a local company, the ages of all new employees hired during the last 10 years are normally distributed. The mean age is 31 years old, with a standard deviation of 10 years. If you were to take a sampling of 10 employees, what is the probability your mean age will be at least 28? Round to the nearest percent.
Answer:
P = 83%
Step-by-step explanation:
In this problem we have the ages of all new employees hired during the last 10 years of normally distributed.
We know that the mean is [tex]\mu = 31[/tex] years and standard deviation is [tex]\sigma = 10[/tex] years
By definition we know that if we take a sample of size n of a population with normal distribution, then the sample will also have a normal distribution with a mean
[tex]\mu_m = \mu[/tex]
And with standard deviation
[tex]\sigma_m = \frac{\sigma}{\sqrt{n}}[/tex]
Then the average of the sample will be
[tex]\mu_m = 31\ years[/tex]
And the standard deviation of the sample will be
[tex]\sigma_m =\frac{10}{\sqrt{10}} = 3.1622[/tex]
Now we look for the probability that the mean of the sample is greater than or equal to 28.
This is
[tex]P ({\displaystyle{\overline {x}}}\geq 28)[/tex]
To find this probability we find the Z-score
[tex]Z = \frac{X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]Z = \frac{28 -31}{\frac{10}{\sqrt{10}}} = -0.95[/tex]
So
[tex]P({\displaystyle{\overline {x}}}\geq 28) = P(\frac{{\displaystyle {\overline {x}}}-\mu}{\frac{\sigma}{\sqrt{n}}}\geq\frac{28-31}{\frac{10}{\sqrt{10}}}) = P(Z\geq-0.95)[/tex]
We know that
[tex]P(Z\geq-0.95)=1-P(Z<-0.95)[/tex]
Looking in the normal table we have:
[tex]P(Z\geq-0.95)=1-0.1710\\\\P(Z\geq-0.95) = 0.829[/tex]
Finally P = 83%
If a = 11 ft, b = 5 ft, and c = 7 ft, what is the surface area of the geometric shape formed by this net?
A. 167 sq. ft.
B. 145 sq. ft.
C. 117.5 sq. ft.
D. 147 sq. ft.
Answer:
the answer is B. 145 sq. ft.
Step-by-step explanation:
find the area of the first 2 triangles
A = 1/2 bh
A = 1/2 ba
a = 1/2 (11 ft.) (5 ft)
a = 27.5 sq ft.
A = 1/2 cb
a = 1/2 (5 ft) (7 ft)
a = 17.5 sq. ft
find the area of the rectangle
A = lw
a = (11 ft.)(5 ft.)
a = 55 sq. ft
Then add all together
2(27.5 sq.ft) + 2(17.5 sq. ft) + 55 sq.ft. = 145 sq. ft.
What is the maximum of the sinusoidal function?
Answer:
The maximum of y = sin x is 1. The amplitude of a sinusoidal function is one-half of the positive difference between the maximum and minimum values of a function.
Step-by-step explanation:
Answer:
0
Step-by-step explanation:
What is the scale of a drawing where an 8 foot wall is two inches long?
8 feet per every 2 inches (8:2) or reduce to 4 feet per inch (4:1)