Answer:
Step-by-step explanation:
buys it for $ 45
well...you know the business is gonna want to make a profit...so they would have to sell it for more then they bought it for.
I would say $ 60 or $ 80
Final answer:
Given the wholesale price of $45, the sensible retail prices to charge customers would be $60 and $80, as they both allow for covering costs and earning a profit, unlike $20 and $40, which would incur losses.
Explanation:
The question involves understanding wholesale and retail prices, essential concepts in economics and business mathematics. When a company buys an item at a wholesale price, it usually marks up the price when selling it at retail to cover costs and generate profit. Given the wholesale price of $45, the retail prices that make sense to charge customers would be those higher than $45 because selling at a lower price would result in a loss.
$60$80Both $60 and $80 are above the wholesale price and would allow the company to cover additional costs and earn a profit. $20 and $40 would not make sense as they are below the wholesale price, leading to a loss per item sold.
I WILL GIVE BRAINLIEST
Step-by-step explanation:
9/8 × (-7/3) =
9 × -7 = -63
8 × 3 = 24
-63/24 simplify
-21/8
If the first two terms of a geometric sequence are 4 and 12, which of the following would be the 10th term?
A) 76
B) 84
C) 78,732
D) 236,196
Answer:
78,732
Step-by-step explanation:
a_1 = 4
a_2 = 12
a_2/a_1 = 12/4 = 3
a_1 = 4
a_2 = 4 * 3 = 4 * 3^1 = 12
a_3 = 4 * 3 * 3 = 4 * 3^2 = 36
a_n = 4 * 3^(n - 1)
For n = 10:
a_10 = 4 * 3^(10 - 1) = 4 * 3^9 = 4 * 19,683 = 78,732
Final answer:
The formula for the nth term of a geometric sequence is a(n) = [tex]\[ a_n = a_1 \times r^{(n-1)} \][/tex], where a(n) is the nth term, a(1) is the first term, and r is the common ratio. In this case, the first term is 4 and the second term is 12. By using the formula, the calculated tenth term is 78,732. Therefore, the correct answer is C.
Explanation:
The formula for the nth term of a geometric sequence is given by:
[tex]\[ a_n = a_1 \times r^{(n-1)} \][/tex]
where:
- [tex]\( a_n \)[/tex] is the nth term,
- [tex]\( a_1 \)[/tex] is the first term,
- [tex]\( r \)[/tex] is the common ratio,
- [tex]\( n \)[/tex] is the term number.
In this case, the first two terms are given as 4 (which is [tex]\( a_1 \)[/tex]) and 12 (which is [tex]\( a_2 \)[/tex]).
The common ratio ([tex]\( r \)[/tex]) can be found by dividing the second term by the first term:
[tex]\[ r = \frac{a_2}{a_1} = \frac{12}{4} = 3 \][/tex]
Now, you can use this common ratio in the formula to find the 10th term [tex](\( a_{10} \))[/tex]):
[tex]\[ a_{10} = 4 \times 3^{(10-1)} \][/tex]
[tex]\[ a_{10} = 4 \times 3^9 \][/tex]
[tex]\[ a_{10} = 4 \times 19683 \][/tex]
[tex]\[ a_{10} = 78,732 \][/tex]
So, the correct answer is: C) 78,732
Write each expression in simplified radical form PLEASE HELP ITS DUE FRIDAY AND I DONT UNDERSTAND THIS AT ALL REALLY BAD TEACHER this is only half the test
Answer:
1) The simplified radical form is [tex]\sqrt{36x^2}=6x[/tex]
2) The simplified radical form is [tex]\sqrt{72x^3}=6x\sqrt{2x}[/tex]
3) The simplified radical form is [tex]\sqrt{15x^8}=\sqrt{15}x^4[/tex]
4) The simplified radical form is [tex]\sqrt{36x^7}=6x^3\sqrt{x}[/tex]
Step-by-step explanation:
1) Given expression is [tex]\sqrt{36x^2}[/tex]
To find the simplified radical form of the given expression :
[tex]\sqrt{36x^2}[/tex]
[tex]=\sqrt{36\times x^2}[/tex]
[tex]=\sqrt{36}\times \sqrt{x^2}[/tex]
[tex]=\sqrt{6\times 6}\times \sqrt{x\times x}[/tex]
[tex]=6\times x[/tex]
[tex]\sqrt{36x^2}=6x[/tex]
Therefore the simplified radical form is [tex]\sqrt{36x^2}=6x[/tex]
2)Given expression is [tex]\sqrt{72x^3}[/tex]
To find the simplified radical form of the given expression :
[tex]\sqrt{72x^3}[/tex]
[tex]=\sqrt{72\times x^3}[/tex]
[tex]=\sqrt{72}\times \sqrt{x^3}[/tex]
[tex]=\sqrt{9\times 8}\times \sqrt{x\times x\times x}[/tex]
[tex]=\sqrt{9}\times \sqrt{8}\times x\sqrt{x}[/tex]
[tex]=3\times 2\sqrt{2}\times x\sqrt{x}[/tex]
[tex]\sqrt{72x^3}=6x\sqrt{2x}[/tex]
Therefore the simplified radical form is [tex]\sqrt{72x^3}=6x\sqrt{2x}[/tex]
3) Given expression is [tex]\sqrt{15x^8}[/tex]
To find the simplified radical form of the given expression :
[tex]\sqrt{15x^8}[/tex]
[tex]=\sqrt{15\times x^8}[/tex]
[tex]=\sqrt{15}\times \sqrt{x^8}[/tex]
[tex]=\sqrt{5\times 3}\times \sqrt{x^4\times x^4}[/tex]
[tex]=\sqrt{15}\times x^4[/tex]
[tex]\sqrt{15x^8}=\sqrt{15}x^4[/tex]
Therefore the simplified radical form is [tex]\sqrt{15x^8}=\sqrt{15}x^4[/tex]
4) Given expression is [tex]\sqrt{36x^7}[/tex]
To find the simplified radical form of the given expression :
[tex]\sqrt{36x^7}[/tex]
[tex]=\sqrt{36\times x^7}[/tex]
[tex]=\sqrt{36}\times \sqrt{x^7}[/tex]
[tex]=\sqrt{6\times 6}\times \sqrt{x^3\times x^3\times x}[/tex]
[tex]=6\times x^3\sqrt{x}[/tex]
[tex]\sqrt{36x^7}=6x^3\sqrt{x}[/tex]
Therefore the simplified radical form is [tex]\sqrt{36x^7}=6x^3\sqrt{x}[/tex]
y=4x + 3 and 2x + y = 39 how can I find the answer
Answer:
x=6
Step-by-step explanation:
2x+(4x+3)=39
2x+4x+3=39
6x+3=39
6x=39-3
6x=36
x=36÷6
x=6
Solving the system of equations y = 4x + 3 and 2x + y = 39, we first substitute y from the first equation into the second. Simplifying, we find x = 6. Substituting x = 6 into the first equation, we find y = 27. Therefore, the solution is x = 6, y = 27.
Explanation:To find the answer to this system of linear equations using substitution method, we first need to make y the subject of the first equation. From y = 4x + 3, we then substitute y in the second equation, thereby getting 2x + 4x + 3 = 39.
After simplifying, the combined equation becomes 6x + 3 = 39. We then isolate x by subtracting 3 from both sides, giving 6x = 36, and therefore x = 6.
To find y, substitute x = 6 into the first equation, y = 4x + 3. Thus, y = 4*6 + 3, which gives y = 27.
So, for the equations y = 4x + 3 and 2x + y = 39, the solution is x = 6, y = 27.
Learn more about solving equations here:https://brainly.com/question/18322830
#SPJ2
Write 7y=3x-14 in standard form
Answer:
3x-7y=14
Step-by-step explanation:
7y=3x-14
3x-7y=14
If f(x) = 5x + 40, what is f(x) when x
О-9
От
o15
.
Answer: x = -9, x = 115
Step-by-step explanation:
when x = -9 :
5(-9) + 40
-45 + 40
= -5
when x = 15
5(15) + 40
75 + 40
= 115
Answer:
X = -5, 40, 115
Step-by-step explanation:
when x = 0-9
5(0-9) + 40
-45 + 40
= -5
when x = 0T =0
5(0) + 40
0 + 40
= 40
when x = 015=15
5(15) + 40
75 + 40
= 115
3a-b=-9 -3a-2b=0 solve by elimination
a = –2 and b = 3
Solution:
Given equations are
3a – b = –9 – – – – (1)
–3a – 2b = 0 – – – – (2)
To solve these equations by elimination method.
Elimination method means eliminating one variable to find the other variable.
Add equation (1) with equation (2), we get
3a – b + (–3a – 2b) = –9 + 0
⇒ 3a – b – 3a – 2b = –9
Combine like terms together.
⇒ 3a – 3a – b – 2b = –9
⇒ 0 – 3b = –9
⇒ – 3b = –9
Divide by (–3) on both sides, we get
⇒ b = 3
Substitute b = 3 in equation (1), we get
(1) ⇒ 3a – b = –9
⇒ 3a – 3 = –9
Add 3 on both sides of the equation,
⇒ 3a = –6
Divide 3 on both sides of the equation
⇒ a = –2
Hence, a = –2 and b = 3.
Given the points A(0,0) B(6,3) and C(1.5,0.75) find the ratio that point C partitioned segment AB.
Answer:
The ratio of AC to CB is 1.677 to 5.03
Step-by-step explanation:
Step 1: Finding the distance of AC
By using distance formula
[tex]AC = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2}[/tex]
Substituting the values
[tex]AC = \sqrt{(1.5 -0)^2 + (0.75 -0)^2}[/tex]
[tex]AC = \sqrt{(1.5 )^2 + (0.75)^2}[/tex]
[tex]AC = \sqrt{2.25 +0.5625 }[/tex]
[tex]AC = \sqrt{2.8125 }[/tex]
AC= 1.677
Step 2: Finding the distance of CB
[tex]CB = \sqrt{(6 - 1.5)^2 + (3 - 0.75)^2}[/tex]
Substituting the values
[tex]CB = \sqrt{(4.5)^2 + (2.25)^2}[/tex]
[tex]CB = \sqrt{(20.25) + (5.0625)}[/tex]
[tex]CB = \sqrt{25.3125}[/tex]
CB = 5.03
The Ratio is 1.677 to 5.03
The river family invested $4300 in a certificate of deposit (cd). The rate of interest is 2.8% compounded yearly. Give the value of the cd at the end of 6 years
Answer:
$722.40
Step-by-step explanation:
2.8% x 4300 = 120.4
120.4 x 6 = 722.40
The volume of the box is cubic feet.
The solution is
Answer:
Volume= 3*4*6= 72 cubic feet
Step-by-step explanation:
Whenever finding volume of a simple rectangular prism like that one, simply multiply the Length of one side by the Height of the prism by the Width of the front face and you will get your solution. Length=6 ft, Height=3 ft, Width=4 ft. Hence, V=L*W*H or V=6*4*3=72 cubic feet.
Tell whether this is a linear relationship, is not one, or it’s impossible to tell. John was 4’ when he was 5 months old, 4’2” when he was 6 months old, and 5’ when he was one year old (John is a snake).
Answer:
Step-by-step explanation:
so John (lol...who names a snake John)....ok...so at 5 months he was 4 ft...and at 6 months, he was 4'2....means he is growing at a rate of 2 inches per month. So if he continues to grow at 2 inches per month, then this is linear...but if he doesn't, its not linear.
So from 6 months to 1 year, is a period of 6 months...and if he grows at 2 inches per month, in 6 months he should have grown (6 * 2) = 12 inches.
4'2" + 12 inches = 4 ft 14 inches = 5 ft 2 inches......but he is not 5'2" at age 1, he is only 5 ft.....so NO, this is NOT linear.
293.08 + 14 + 2.719 =
Answer:309.799
Step-by-step explanation:293.08
14.00 =309.799
+ 2.719
1. What is Paul's net pay if he earns $4.30 for each hour worked, works 10 hours, and has payroll
deductions of 13%?
Answer:
37.41
Step-by-step explanation:
multiply 4.30 by 10 to get 43
then make it a decimal =0.43
after that multiply it by 13
0.43 times 13 = 5.59
subtract 5.59 from 43
Craig types 20 words per minute. Write an expression for the number of words Craig types in m minutes
The expression for the number of words Craig types in m minutes is 20 words/minute × m minutes. This equation can be used to calculate how many words Craig can type in any given number of minutes.
Explanation:If Craig types at a speed of 20 words per minute, to find the expression for the number of words he types in m minutes, you would use the simple formula of rate times time. The rate is the number of words per minute, and the time is how many minutes he is typing. Therefore, the expression would be:
20 words/minute × m minutes = number of words Craig can type in m minutes.
To find out if Craig can type more than 200 words, you can set m to a value greater than 10, since 20 words/minute for 10 minutes would result in 200 words exactly (20 × 10 = 200).
The mean 49,65,41,38,87,55,95,106
Hope this will help u. If my ans was helpful u can follow me.
THANKYOU.
Is x2 - 2 a factor of x4 - 2x3 + 3x2 - 4x + 5 ?
Matt wants to build a rectangular enclosure for this animal. One wide of the pen will against the barn. So he needs no fence on that side. The other three sides will be enclosure with wire fencing. If Matt has 1000 feet of fencing. You can find the dimensions that maximizes the area of the enclosure.
Answer:
A = 90,312.5 square feet is the maximum area.
Step-by-step explanation:
Here, the shape of the enclosure = Rectangle
Now, 3 sides of the rectangle needs to be fenced.
Total length of the fencing wire = 1000 ft
Let us assume the length of the enclosure = L
The width of the enclose = W
According to question:
The length to fenced = Perimeter of the rectangle - 1 side of Enclosure
⇒ 1000 = 2 (L + W) - L
or, 1000 = L + 2 W
or, L = 1000 - 2 W .... (1)
Now, as we need to MAXIMIZE the area of the enclosure:
Area of the enclosure = L x W = (1000 - 2 W) x W
Now simplifying the area expression, we get:
[tex]A(w) = 1000 w - 2w^2[/tex]
This is a parabola that opens downward so there is a maximum point.
The vertex of the parabola is (h,k) where h is the "maximizing number" and k is the maximum area.
Use the fact that h = -b/2 a
h = -850/(2*[-2])
h = -850/(-4)
h = 212.5 would be the length of all four sides if it were not for the barn
Therefore you have an extra 212.5 feet
Add the 212.5 feet to the opposite side(length) to get 425 feet.
You have a rectangle that is 212.5 feet by 425 feet by 212.5 feet by "the barn".
The width is 212.5 feet which maximizes the area.
A = l w
A = 425*212.5
A = 90,312.5 square feet is the maximum area.
Which of the following is not represented in the image below?
Answer:
Answer is: C - hope it helps you!
PLs help 50 PTS!!!!! PLEASE ILL GIVE BRAINLIEST!!!!!
Answer:
[tex]\large\boxed{y=\dfrac{1}{4}x^2-x-4}[/tex]
Step-by-step explanation:
The equation of a parabola in vertex form:
[tex]y=a(x-h)^2+k[/tex]
(h, k) - vertex
The focus is
[tex]\left(h,\ k+\dfrac{1}{4a}\right)[/tex]
We have the vertex (2, -5) and the focus (2, -4).
Calculate the value of a using [tex]k+\dfrac{1}{4a}[/tex]
k = -5
[tex]-5+\dfrac{1}{4a}=-4[/tex] add 5 to both sides
[tex]\dfrac{1}{4a}=1[/tex] multiply both sides by 4
[tex]4\!\!\!\!\diagup^1\cdot\dfrac{1}{4\!\!\!\!\diagup_1a}=4[/tex]
[tex]\dfrac{1}{a}=4\to a=\dfrac{1}{4}[/tex]
Substitute
[tex]a=\dfrac{1}{4},\ h=2,\ k=-5[/tex]
to the vertex form of an equation of a parabola:
[tex]y=\dfrac{1}{4}(x-2)^2-5[/tex]
The standard form:
[tex]y=ax^2+bx+c[/tex]
Convert using
[tex](a-b)^2=a^2-2ab+b^2[/tex]
[tex]y=\dfrac{1}{4}(x^2-2(x)(2)+2^2)-5\\\\y=\dfrac{1}{4}(x^2-4x+4)-5[/tex]
use the distributive property: a(b+c)=ab+ac
[tex]y=\left(\dfrac{1}{4}\right)(x^2)+\left(\dfrac{1}{4}\right)(-4x)+\left(\dfrac{1}{4}\right)(4)-5\\\\y=\dfrac{1}{4}x^2-x+1-5\\\\y=\dfrac{1}{4}x^2-x-4[/tex]
Answer:
yes
Step-by-step explanation:
At a baseball game, a vender sold a combined total of 166 sodas and hot dogs. The number of sodas sold was 44 more than the number of hot dogs sold. Find
the number of sodas sold and the number of hot dogs sold.
Number of sodas sold:
Number of hot dogs sold:
Answer:
number of sodas sold = 105
number of hot dogs sold = 61
Step-by-step explanation:
i) Let the number of sodas sold be = x
ii) Let the number of hot dogs sold be = y
iii) It is given that the total number of hot dogs and sodas sold = 166
Therefore we can say that x + y = 166
iv) It also given that the number of sodas sold was 44 more than the number of hot dogs sold
Therefore we can say that x = y + 44
v) Substituting the value of x from iv) in the equation in iii) we get
(y + 44) + y = 166 ⇒ 2y + 44 = 166 ⇒ 2y = 122 ∴ y = 61
Therefore the number of hot dogs sold = 61
vi) Substituting the value of y from v) in iv) we get
x = y + 44 ⇒ x = 61 + 44 ∴ x = 105
Therefore the number of sodas sold = 105
Please help due today i beg of u i really need help like plzzzz.......
Answer:
8. The volume of the rocket is [tex]105\pi[/tex] [tex]inch^{3}[/tex].9. Matt made the error by putting the value of the diameter.Step-by-step explanation:
8. The volume of the rocket = the volume of the cone + the volume of the cylinder.
The volume of the cone is = [tex]\frac{1}{3} \pi \times radius^{2} (height) = \frac{1}{3} \pi \times 3^{2} \times5 = 15\pi[/tex] [tex]inch^{3}[/tex].
The volume of the cylinder is [tex]\pi \times radius^{2} \times height = \pi \times 3^{2} \times 10 = 90\pi[/tex] [tex]inch^{3}[/tex].
The total volume is [tex]15\pi + 90\pi = 105\pi inch^{3}[/tex].
9. Matt made the error in calculating the volume.
The diameter of the spherical ball is given by 15 centimeter.
The volume of a spherical ball is calculated by the formula [tex]\frac{4}{3} \pi \times radius^{3}[/tex].
Matt put the diameter of the spherical ball instead of its radius.
find equation of a line through 5 -3 that is parallel to y=1/2x+3
Answer:
The equation of a line through (5 -3) that is parallel to y = 1/2 x+3 is
y = - 2 x + 7
Step-by-step explanation:
Let us assume the slope of the line whose equation we need to find is m 1.
The line parallel to the needed line is: y=1/2x+3
Comparing it with the general form: y = m x + C
we get m 2 = 1/2
Now, as Line 1 is Perpendicular to Line 2.
⇒ m 1 x m 2 = -1
⇒ m 1 x ( 1/2) = -1
⇒ m 1 = - 2
Also, the point son the line 1 is given as: (x,y) = (5,-3)
Put the value of point and Slope in y = m x + C to find the value of Y- INTERCEPT.
we get: -3 = (-2) (5) + C
or, C = -3 + 10 = 7
⇒ C = 7
The general line equation is given as: y = m x + C
Substituting the values of C and m, we get:
y = - 2 x + 7
Hence, the equation of a line through 5 -3 that is parallel to y = 1/2 x+3 is
y = - 2 x + 7
Triangle PQR is a right triangle.
Triangle P Q R. Angle P is 90 degrees, angle Q is x degrees, angle R is 2 x degrees.
Which equation could be used to find the measure of Angle Q?
180 = 3 x
180 = 3 x + 90
180 = 2 x + 90
90 = x + 2 x
Answer:
The answer 180=3x+90
12
Which of the following is a correct equation based on the triangle shown?
0.766 = 12/x
0.766 = x/12
0.6428 = x/12
0.6428 = 12/x
Answer: 0.766 = x/12
Final answer:
The correct equation for the triangle is determined by the context provided, which may involve setting up proportions or using trigonometric ratios such as the tangent. Without specific information from a diagram or narrative of the triangle, the correct equation cannot be identified.
Explanation:
The correct equation based on the triangle shown is determined by setting up a mathematical relationship (proportion or equation) that represents the situation described in the diagram or narrative associated with the triangle. Without the specific diagram or narrative details, it is impossible to determine the correct equation. However, generally, if you are given the lengths of sides in different units (for example, feet and inches), you would set up a proportion like
1 foot/12 inches = x feet/y inches
and then cross-multiply to solve for x or y.
If you are dealing with trigonometric functions and are given an angle, you may use a function like sine, cosine, or tangent to find a relationship between the sides. The correct equation could include the tangent ratio if the triangle is right-angled and you have the lengths of the opposite and adjacent sides to the given angle:
tan(theta) = opposite/adjacent
A painter can paint 350 square feet in 1.25 hours. What is the painting rate in square feet per hour?
We are given a painter can paint 350 square feet in 1.25 hours.
We want to figure out the painting rate in square feet per hour. “Per hour” means for every 1 hour.
To find this, an equation like 350 = 1.25h (h for hours) can be set up. To solve, the only thing we need to do is divide by 1.25 to get h alone:
350/1.25 = 1.25h/1.25 or 280 = h
The painter can paint 280 square feet per 1 hour.
Can someone help me plz lol I can't figure this one out
[tex]4NO+6H_{2} O\Leftrightarrow4 NH _{3}+5O_{2}[/tex]
Step-by-step explanation:
[tex]NO+H_{2} O\rightarrow NH _{3}+O_{2}[/tex]
[tex]4NO+6H_{2} O\Leftrightarrow4 NH _{3}+5O_{2}[/tex]
Solve 0.25[2.5x + 1.5(x – 4)] = –x.
Answer:
X = 0.75
Step-by-step explanation:
0.25[2.5x + 1.5(X-4)]= -X
0.25[2.5x + 1.5x - 6] = -x
0.25[4x -6] = -x
1x + x = 1.5
2x = 1.5
x = 1.5/2
x = 0.75
month for 9 months, Jordan
sports books. How many
sports books does he need to
before he has bought 25 sports
Each month for 9 months, Jordan buys 2 sports books. How many more sports books does he need to buy before has bought 25 sports books?
Answer:Jordan needs to but 7 more sports book
Solution:From given,
Each month for 9 months, Jordan buys 2 sports books
Thus for one month he buys 2 sports books
For, 9 months, number of books is bought is given as:
[tex]\text{Number of books bought in 9 months } = 9 \times 2 = 18[/tex]
Thus, in 9 months he has bought 18 books
He needs to buy 25 sports books
Therefore, remaining books to be bought = 25 - 18 = 7
Thus he needs to buy 7 more books to have 25 of them
A line segment has endpoints at (2, -3) and (5,-3). What is the equation of the perpendicular bisector of the line segment?
x= -3
x = 4
x= 3.5
y=-3
A linear function has a slope of 3 and passes through the point (0,-7). What is the equation of the line?
Answer:
y=3x+-7
Step-by-step explanation:
the standard form is y=mx+b
m being the slope and b being the y intercept