Answer:
13/20 of her money was spent.
Step-by-step explanation:
To find the answer you have to add these two fractions together, and to do that you must find a common denominator.
For this problem I chose to use 20 for the denominator since it is the smallest number that both 4 and 5 have in common.
Keep in mind that, whatever you do to the denominator, you must also do to the numerator, so if you multiply 5 by 4, you must also multiply 2 by 4.
5/20 + 8/20 = 13/20
5. Which polynomial is equal to (x^5+ 1) divided by (x + 1)?
AXA - X3 .x² - x + 1.
B X - X² + x² - x + 1
C x4 + x3 -- x2 + x + 1
D x + x3 + x² + x 1
Answer:
B [tex]x^4-x^3+x^2-x+1[/tex]
Step-by-step explanation:
Given,
Dividend = [tex](x^5+1)[/tex]
Divisor = [tex](x+1)[/tex]
Now According to the rule of Division.
Step 1: At first dividend is [tex](x^5+1)[/tex] and Divisor is [tex](x+1)[/tex] when it is divided for the first time the quotient will be [tex]x^4[/tex] and remainder will be [tex]-x^4+1[/tex]
Step: 2 Now the remainder of step 1 will be new dividend which is [tex]-x^4+1[/tex] and Divisor is [tex](x+1)[/tex] so when it is divided the quotient will be [tex]x^4-x^3[/tex] and remainder will be [tex]x^3+1[/tex]
Step: 3 Now the remainder of step 2 will be new dividend which is [tex]x^3+1[/tex] and Divisor is [tex](x+1)[/tex] when it is divided the quotient will be [tex]x^4-x^3+x^2[/tex] and remainder will be [tex]-x^2+1[/tex]
Step: 4 Now the remainder of step 3 will be new dividend which is [tex]-x^2+1[/tex] and Divisor is [tex](x+1)[/tex] when it is divided the quotient will be [tex]x^4-x^3+x^2-x[/tex] and remainder will be [tex]x+1[/tex]
Step: 5 Now the remainder of step 4 will be new dividend which is [tex]x+1[/tex] and Divisor is [tex](x+1)[/tex] when it is divided the quotient will be [tex]x^4-x^3+x^2-x+1[/tex] and remainder will be 0.
Hence When the polynomial [tex](x^5+1)[/tex] is divided by [tex](x+1)[/tex] the answer or quotient will be equal to [tex]x^4-x^3+x^2-x+1[/tex] and remainder will be 0.
The ratio of two complementary angles is 7:2. What is the measure, in degrees, of the larger angle?
Answer:
70 degrees
Step-by-step explanation:
Complementary angles sum up to 90.
To find the larger angle, you find the total of the values in the ratio, divide the larger value of the ratio by the total and multiply it by 90.
(7/7+2)×90=7/9×90
=7×10
=70
OR
Write an equation:
7x+2x=90
9x=90
x=10
Then multiply x by the larger value.
7x=7 (10)=70
The car is purchase for $18,000 after each year the resell value decreases by 25% what will the resale value be after three years
Answer:
18000×75÷100 =13500 ×3 =40500 .
Solve for y.
K=4yz
????
Answer:
y=K/4z
Step-by-step explanation:
K=4yz
y=K/4z
Answer:
Step-by-step explanation:
Find the sum.
7x + 15x=
Answer:
7x + 15x= 21x
Step-by-step explanation:
7x + 15x
= (7 + 15)x
= 22x
Answer: 22x
Step-by-step explanation: +7x and +15x are called terms and the numbers in front of the variables, +7 and +15 are called coefficients.
Because the variables, x and x, are identical, the two terms in this problem are called like terms. Like terms can be added together by simply adding their coefficients. So in this problem, since 7 + 15 is 22, 7x + 15x is simply 22x.
A 16 liter radiator is filled with a solution of 40 % antifreeze. How much should you drain from the radiation and replace with pure antifreeze to obtain a 60 % antifreeze solution?
[tex]5\frac{1}{3}[/tex] liters is the amount to be drained out and replaced
Solution:
40 % antifreeze solution in 16 liter radiator
Let "x" be the amount drained from radiation and replaced with pure antifreeze
To obtain a 60 % antifreeze solution
The original solution is 16 liter, 40% of which is antifreeze
You want the solution to be 60% antifreeze:
60 % x 16 = [tex]\frac{60}{100} \times 16 = 9.6[/tex]
You will remove x liters of the 40% solution and replace it with x liters pure (100%) antifreeze.
[tex]40 \% (16 - x) + 100 \% \times x = 60 \% \times 16[/tex]
Let us solve expression for "x"
[tex]\frac{40}{100} \times (16 - x) + \frac{100}{100} \times x = \frac{60}{100} \times 16\\\\0.4(16-x) + x = 0.6 \times 16\\\\6.4 - 0.4x + x = 9.6\\\\6.4 + 0.6x = 9.6\\\\0.6x = 3.2\\\\x = 5.33\\\\x = 5\frac{1}{3}[/tex]
Thus [tex]5\frac{1}{3}[/tex] liters is the amount to be drained out and replaced
If the interest earned on an account after 7 years at 6% is $1785 ,what is the initial value
Answer:
$4250
Step-by-step explanation:
i = prt
or
p = i / rt
where,
i = $1,785
r = 6% = 0.06
t = 7 years
So, we can calculate initial vale by putting the values in above equation;
p = $1,785 / (0.06 x 7)
p = $1,785 / 0.42
p = $4,250
Hence the initial value will be $4250
What kind of molecule is represented in the diagram?
Fatty Acid
Glycerol
Fatty Acid
Fatty Acid
A. A nucleic acid
B. A lipid
C. A nucleotide
D. A carbohydrate
Answer:
A lipid
Step-by-step explanation:
When 1 "Glycerol "and 3"Fatty Acids" form a bond the new molecule is called "Triglyceride" which is a type of "Lipid"
A worker at a snack stand opened a new box of cups. The first day he used 30 cups , the second day the worker used 15 percent of the remaining cups. A total of 90 cups were used the second day.what was the original amount of cups in the box before any were used?
plz help asap will give u brainliest :)
Answer:
Step-by-step explanation:
the first day he used 30 cups
the second day he used 15% of the remaining cups...a total of 90 cups were used on second day.
so 15%of the remaining cups = 90.....so if u let x be the total cups, then the remaining cups would be x - 30
15% of (x - 30) = 90.....turn ur percent to a decimal..." of " means multiply
0.15(x - 30) = 90
0.15x - 4.5 = 90
0.15x = 90 + 4.5
0.15x = 94.5
x = 94.5 / 0.15
x = 630 total cups <==
lets check..
start with 630 cups....used 30 the first day....leaving u with 600 cups....15% of the remaining cups = 90.....so 15% of 600 = 90....lets check it
15%of 600 = 0.15(600) = 90...yep, thats correct....there were 630 cups in the new un-opened box
Answer:
630
Explanation:
15% * number of remaining cups = 90
15% * (x-30) = 90
0.15(x-30) = 90
0.15x - 4.5 = 90
0.15x = 94.5
x = 630
A eagle has landed in a tree 50 feet above sea level. Directly below the eagle, a seagull is flying 17 feet above sea level. Directly below the birds is a trout, swimming 23 feet below sea level. Select all the true statements. Consider using the number line to show your work.
the true statements are:
- B. The difference in height between the pelican and the heron is 33 feet.
- C. The distance between the heights of the pelican and heron is 33 feet.
- E. The difference in height between the pelican and the trout is 40 feet.
- F. The distance between the heights of the pelican and the trout is 40 feet.
Let's calculate the differences and distances between the heights of the given objects.
Given heights:
- Heron: 50 feet above sea level
- Pelican: 17 feet above sea level
- Trout: 23 feet below sea level
Now, let's calculate the differences and distances:
A. The difference in height between the pelican and the heron is:
[tex]\[ \text{Difference} = \text{Height of pelican} - \text{Height of heron} \][/tex]
[tex]\[ \text{Difference} = 17 - 50 \][/tex]
[tex]\[ \text{Difference} = -33 \][/tex]
B. The difference in height between the pelican and the heron is:
[tex]\[ \text{Difference} = \text{Height of heron} - \text{Height of pelican} \][/tex]
[tex]\[ \text{Difference} = 50 - 17 \][/tex]
[tex]\[ \text{Difference} = 33 \][/tex]
C. The distance between the heights of the pelican and heron is the absolute value of their difference:
[tex]\[ \text{Distance} = |\text{Difference}| \][/tex]
[tex]\[ \text{Distance} = |-33| \][/tex]
[tex]\[ \text{Distance} = 33 \][/tex]
D. The difference in height between the pelican and the trout is:
[tex]\[ \text{Difference} = \text{Height of pelican} - \text{Height of trout} \][/tex]
[tex]\[ \text{Difference} = 17 - (-23) \][/tex]
[tex]\[ \text{Difference} = 17 + 23 \][/tex]
[tex]\[ \text{Difference} = 40 \][/tex]
E. The difference in height between the pelican and the trout is:
[tex]\[ \text{Difference} = \text{Height of trout} - \text{Height of pelican} \][/tex]
[tex]\[ \text{Difference} = -23 - 17 \][/tex]
[tex]\[ \text{Difference} = -40 \][/tex]
F. The distance between the heights of the pelican and the trout is the absolute value of their difference:
[tex]\[ \text{Distance} = |\text{Difference}| \][/tex]
[tex]\[ \text{Distance} = |-40| \][/tex]
[tex]\[ \text{Distance} = 40 \][/tex]
So, the true statements are:
- B. The difference in height between the pelican and the heron is 33 feet.
- C. The distance between the heights of the pelican and heron is 33 feet.
- E. The difference in height between the pelican and the trout is 40 feet.
- F. The distance between the heights of the pelican and the trout is 40 feet.
complete question given below:
A heron is perched in a tree 50 feet above sea level. Directly below the heron, a pelican is flying 17 feet above sea level. Directly below the birds is a trout, swimming 23 feet below sea level.
Select all the true statements.
A The difference in height between the pelican and the heron is -33 feet.The difference in height between the pelican and the heron is -33 feet.
B The difference in height between the pelican and the heron is 33 feet.The difference in height between the pelican and the heron is 33 feet.
C The distance between the heights of the pelican and heron is -33 feet.The distance between the heights of the pelican and heron is -33 feet.
D The difference in height between the pelican and the trout is -40 feet.The difference in height between the pelican and the trout is -40 feet.
E The difference in height between the pelican and the trout is 40 feet.The difference in height between the pelican and the trout is 40 feet.
F The distance between the heights of the pelican and the trout is 40 feet.
find the domain of the function below if the domain is {-1,0,2} f(x)=x^2 -2x+3
Answer:
The Range is {3, 6}.
Step-by-step explanation:
The correct question is
Find the range of the function below if the domain is {-1,0,2} f(x)=x^2 -2x+3
we know that
The domain represents all possible values of x.
The range represents all possible values of f(x)
Substitute all of the possible x-values (domain) into the formula to find all possible f(x) values (the range).
For x=-1
[tex]f(-1)= (-1)^{2} - 2(-1) + 3[/tex]
[tex]f(-1)=1+2+ 3[/tex]
[tex]f(-1)=6[/tex]
For x=0
[tex]f(0)= (0)^{2} - 2(0) + 3[/tex]
[tex]f(0)=0-0+ 3[/tex]
[tex]f(0)=3[/tex]
For x=2
[tex]f(2)= (2)^{2} - 2(2) + 3[/tex]
[tex]f(2)=4-4+ 3[/tex]
[tex]f(2)=3[/tex]
therefore
The Range is {3, 6}.
3x + 4y = 14 x = 2y - 12 cordanit plane
Answer:
(- 2, 5 )
Step-by-step explanation:
Given the 2 equations
3x + 4y = 14 → (1)
x = 2y - 12 → (2)
Substitute x = 2y - 12 into (1)
3(2y - 12) + 4y = 14 ← distribute and simplify left side
6y - 36 + 4y = 14
10y - 36 = 14 ( add 36 to both sides )
10y = 50 ( divide both sides by 10 )
y = 5
Substitute y = 5 into (2) for corresponding value of x
x = 2(5) - 12 = 10 - 12 = - 2
Solution is (- 2, 5 )
To find the point that satisfies both equations, substitute the value of x from the second equation into the first equation and solve for y. Then substitute the value of y into the second equation to find x. The point (-2, 5) satisfies both equations.
To find the point that satisfies both equations, we need to solve the system of equations:
3x + 4y = 14
x = 2y - 12
Substituting the value of x from the second equation into the first equation, we get:
3(2y - 12) + 4y = 14
6y - 36 + 4y = 14
10y = 50
y = 5
Substituting the value of y into the second equation, we get:
x = 2(5) - 12
x = 10 - 12
x = -2
Therefore, the point (-2, 5) satisfies both equations.
complete question given below:
3x+4y=14
x=2y-12
which point satisfies both equation
7/8 +n/4 = 3/8. What is N
Answer:
n=-2
Step-by-step explanation:
7/8+n/4=3/8
n/4=3/8-7/8
n/4=-4/8
-4/8=-1/2
n/4=-1/2
cross product
4*-1=2*n
-4=2n
n=-4/2
n=-2
Answer:
Step-by-step explanation:
7/8 +n/4 = 3/8
Multiply each term by 8
(8)7/8 +n/4(8) = 3/8(8)
7 + 2n = 3
2n = 3 - 7
2n = - 4
n = -4/2
n = -2
If f(x) = 4x - 3, what is f(x)^-1
Answer:
[tex]f^{-1}[/tex](x) = [tex]\frac{x+3}{4}[/tex]
Step-by-step explanation:
let y = f(x) and rearrange making x the subject, that is
y = 4x - 3 ( add 3 to both sides )
y + 3 = 4x ( divide both sides by 4 )
[tex]\frac{y+3}{4}[/tex] = x
Change y back into terms of x
[tex]f^{-1}[/tex](x) = [tex]\frac{x+3}{4}[/tex]
The function f(x) varies inversely with x and f(x)= -10 when x = 20
What is the inverse variation equation?
A. f(x) = -2/x
B. f(x) = - 50/x
C. f(x) = - 0.5/x
D. f(x) = -5/x
Answer:
The inverse variation function can be written as:
[tex]f(x)=\frac{-200}{x}[/tex]
Step-by-step explanation:
Given :
[tex]f(x)[/tex] varies inversely with [tex]x[/tex]
when [tex]x=20[/tex], [tex]f(x)=-10[/tex]
To find the inverse variation equation.
Solution:
[tex]f(x)[/tex] varies inversely with [tex]x[/tex] can be represented as:
[tex]f(x)[/tex] ∝ [tex]\frac{1}{x}[/tex]
Thus, [tex]f(x)=\frac{k}{x}[/tex]
where [tex]k[/tex] represents the constant of proportionality.
We can determine the value of [tex]k[/tex] by plugging in the values given.
when [tex]x=20[/tex], [tex]f(x)=-10[/tex]
So, we have
[tex]-10=\frac{k}{20}[/tex]
Multiplying both sides by 20.
[tex]20\times (-10)=20\times \frac{k}{20}[/tex]
[tex]-200=k[/tex]
Thus the inverse variation function can be written as:
[tex]f(x)=\frac{-200}{x}[/tex]
A store sells onions by the pound, the
proportional relationship is graphed on
coordinate plane below. Which equation
describes the relationship?
A) y=0.33x
B) y=0.66x
C) y=1.5x
D) y=2.3x
Answer:
C
Step-by-step explanation:
We have a linear equation in the form y = mx
Where m is the slope
The slope is the change in y divided by change in x.
We can take any 2 points on the line and see the change in y and divide it by the change in x. We will get slope, m.
Lets take points (2,3) and (6,9).
The change in y is 9 - 3 = 6
The change in x is 6 - 2 = 4
So, the slope would be:
m = 6/4 = 3/2 = 1.5
So, the equation would be:
y = 1.5x
Correct answer is C.
16 equals m-14 what is the value of m
Answer:
16=m-14
To find the value of m you want to add 14 to each side
30=m
Step-by-step explanation:
-6y+13+9y=8y-3−6y+13+9y=8y−3
Answer:
y=3/8
Step-by-step explanation:
-6y+13+9y=3y+13
3y+13=8y-3-6y+13+9y
3y+13=2y+9y-3+13
3y+13=11y+10
13=11y-3y+10
13=8y+10
8y=13-10
8y=3
y=3/8
how to solve this equation
-6=b/18
Answer:
b=-108
Step-by-step explanation:
To solve this equation for b, you simply multiply each side by 18. The reason you do this is to isolate the b.
[tex]-6=\frac{b}{18}[/tex]
[tex]18(-6)=(\frac{b}{18} )(18)[/tex]
[tex]-108=b[/tex]
Various dilations of square A are shown. Which square was obtained by dilating square A by the scale factor of
1
2
This question is incomplete. I found similar question with picture. Please refer to the attachment to relate with my answer
Full Question:
Various dilations of square A are shown. Which square was obtained by dilating square a by the scale factor of 3.
Answer:
E
Step-by-step explanation:
The square a is a 2 unit x 2 unit square. With scale factor of 3. Any unit length of the object must be multiplied by 3
In this case, since the object side is 2, the image side must be 2x3 = 6 units.
Therefore, the dilation of square A with factor of 3 is square E
Kedwin has $150.00 and wants to buy a new pair of headphones that cost $175.00 plus 10% shipping. He decides to wait until the headphones go on sale. What is the smallest sale rate that he needs to be able to afford them?
Answer:
I believe its 20% thats counting the 10% shipping cost
Step-by-step explanation:
Final answer:
Kedwin needs a minimum sale rate of approximately 24.29% in order to afford the headphones.
Explanation:
To calculate the minimum sale rate that Kedwin needs to be able to afford the headphones, we first need to calculate the total cost of the headphones including shipping. The headphones cost $175.00 and the shipping is 10% of the cost, which is $17.50. So the total cost is $175.00 + $17.50 = $192.50.
Next, we subtract Kedwin's current funds, $150.00, from the total cost, $192.50, to find the amount he still needs, which is $192.50 - $150.00 = $42.50.
Finally, we divide the amount he still needs by the original cost of the headphones and multiply by 100 to find the minimum sale rate. In this case, the calculation is ($42.50 / $175.00) * 100 = 24.29%. Therefore, Kedwin needs a minimum sale rate of approximately 24.29% in order to afford the headphones.
how to solve 4x + 7 = -2x + 19
subtract 7 from both sides
4x = -2x + 12
add 2x to both sides
6x = 12
divide both sides by 6
x = 2
Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar.
Determine the equation for the parabola graphed below.
y =
x2 +
x +
Answer:
[tex]\large\boxed{y=\dfrac{1}{2}x^2-2x+1}[/tex]
Step-by-step explanation:
The vertex form of an equation of a parabola:
[tex]y=a(x-h)^2+k[/tex]
(h, k) - vertex
a - leading coefficient in equation y = ax² + bx + c
From the grap we can read coordinates of the vertex (2, -1) and y-intercept (0, 1).
Therefore h = 2, k = -1
Put the values of h, k and coordinates of the y-intercept to the equation of parabola:
[tex]1=a(0-2)^2-1[/tex] add 1 to both sides
[tex]1+1=a(2)^2-1+1[/tex]
[tex]2=4a[/tex] divide both sides by 4
[tex]\dfrac{2}{4}=\dfrac{4a}{4}\\\\\dfrac{1}{2}=a\to a=\dfrac{1}{2}[/tex]
Therefore we have the equation:
[tex]y=\dfrac{1}{2}(x-2)^2-1[/tex]
Convert to the standard form:
[tex]y=\dfrac{1}{2}(x-2)^2-1[/tex] use (a - b)² = a² - 2ab + b²
[tex]y=\dfrac{1}{2}(x^2-2(x)(2)+2^2)-1[/tex]
[tex]y=\dfrac{1}{2}(x^2-4x+4)-1[/tex] use the distributive property
[tex]y=\dfrac{1}{2}x^2-\dfrac{1}{2}\cdot4x+\dfrac{1}{2}\cdot4-1[/tex]
[tex]y=\dfrac{1}{2}x^2-2x+2-1[/tex] combine like terms
[tex]y=\dfrac{1}{2}x^2-2x+1[/tex]
Math word problem we need help?
The total profit is :$37.46. Number of boxes for pop B to purchase more is 56 boxes.
Step-by-step explanation:
1.
Pop B number =36
Remaining Pop B after meeting = 36-17 =19
Amount obtained after selling remaining Pop B = 19* 0.75 = $14.25
Pop A number =75
Remaining Pop A after meeting = 75-8 =67
Amount obtained after selling pop A = 67*0.5 =$33.5
Profit in Pop B = $14.25-$3.79 =$10.46
Profit in Pop A =$33.5 -$6.50 = $27
Total profit after sell of Pop A and B = $10.46+$27 = $37.46
2.
The target profit is $250
Subtracting profit meet = $250 - $ 37.46 =$212.54
Profit to be attained by the sell of pop B only should be =$212.54
Selling price of pop B per box is $3.79
Number of boxes for pop B to purchase more will be;
$212.54/ $3.79 = 56.08 ⇒ 56 more boxes
Learn More
To find profit from selling price ;https://brainly.com/question/927518
Keywords ; pop, profit, goal, more boxes, sale price , brand
#LearnwithBrainly
Question on photo, there are two parts, read carefully! Will mark brainliest
20 POINTS BRAINLIEST
First solving for log5(92):
log5(92) = log(92) / log(5) = 2.8095 = 2.810
Now to change to base 3:
log3(x) = log5(92)
Solve for x:
x = 3^(log5(92)
x = 3^2.810
x = 21.903
The answer would be the first one.
Answer:
I got A
Hope this helps
Step-by-step explanation:
Should perimeter or area be used to find the amount of fencing for a paddock?
an inline 3-cylinder engine has a 11 cm bore, the stroke is 6cm. Calculate the total stroke volume of the engine in cm3
Answer:
544.5π cm³ ≈ 1711 cm³
Step-by-step explanation:
Each cylinder has a bore (diameter) of 11 cm, and stroke (height) of 6 cm.
V = πr²h
V = π (11 cm / 2)² (6 cm)
V = 181.5π cm³
There are 3 cylinders, so the total volume is:
3V = 544.5π cm³
3V ≈ 1711 cm³
To calculate the total stroke volume of an inline 3-cylinder engine with an 11 cm bore and a 6 cm stroke, calculate the area of the bore, find the volume of one cylinder by multiplying by the stroke, and then multiply by the number of cylinders. The total stroke volume of the engine is 1710.6 cm³.
The student asked to calculate the total stroke volume of an inline 3-cylinder engine with an 11 cm bore and a 6 cm stroke. The formula to calculate the volume of a single cylinder is V = rac{ ext{ extpi}}{4} imes D^2 imes S, where V is the volume, D is the diameter of the bore, and S is the stroke. In this case, D would be 11 cm, and we would need to square this value, then multiply by extpi/4 and by the stroke length of 6 cm, then multiply the result by the number of cylinders, which is 3, to get the total engine displacement.
Step by step, we first calculate the area of the bore (cylinder base):
Area = extpi imes (radius)² = extpi imes (5.5 cm)²
= extpi imes 30.25 cm²
= 95.0332 cm². Next, we calculate the volume of one cylinder: Volume = Area imes Stroke = 95.0332 cm² imes 6 cm = 570.1992 cm³. Finally, we find the total volume for all three cylinders: Total Volume = 570.1992 cm³ imes 3
= 1710.5976 cm³. Thus, the total stroke volume of the engine is 1710.5976 cm³ or rounded to 1710.6 cm³.
Need help with this Asap.
Answer:
B
Step-by-step explanation:
Emma buys and sells truck parts. she bought 2 tires for $35 and later sold them for $65. she bought three rims for $75 and later sold them for $136. she bought 4 headlight covers for $4 and later sold them for $15. what is Emma's total profit?
Answer:
The two tires she bought is $35+$35 which then equals to $70. She spent $70 on tires. She then sold them for $65. She bought three rims, each $75... $75+$75+$75 which then equals her $225. And then sold them for $136. She then bought four headlight covers for $4 each... $4+$4+$4+$4, which equals her $16. Then sold them for $15. Her total profit is -$95. How i got that answer you say, well, if you calculate how much she spent on everything in total, she spent -$311 on everything. You then calculate how much she gained by selling everything she had bought, which was a total of $216. Add both of the total prices, -$311+216= you get -$95.
Step-by-step explanation:
Answer:
298
Step-by-step explanation:
35*2=70 65*2=130 130-70=60
75*3=225 136*3=408 408-225=183
5*4=20 15*5=75 75-20=55
55+60+183=298