Nine less than the quotient of two and a number xxx.

Answers

Answer 1

the expression to represent "Nine less than the quotient of two and a number ( x )" is:[tex]\[ \frac{2}{x} - 9 \][/tex]

To represent "Nine less than the quotient of two and a number ( x )", we first need to find the quotient of two and ( x ), and then subtract nine from it.

Let's break it down:

1. Quotient of two and a number ( x ):

  This is represented as [tex]\( \frac{2}{x} \).[/tex]

2. Nine less than the quotient:

  Subtracting nine from the quotient gives [tex]\( \frac{2}{x} - 9 \).[/tex]

So, the expression to represent "Nine less than the quotient of two and a number ( x )" is:

[tex]\[ \frac{2}{x} - 9 \][/tex]

complete question given below:

Write an expression to represent: Nine less than the quotient of two and a number xxx.


Related Questions

A rectangular pyramid is sliced so the cross section is parallel to its base.

What is the shape of the cross section?


triangle

pentagon

trapezoid

rectangle

Answers

It’s a trapezoid would be the answer

Answer:

The answer is below :)

Step-by-step explanation:

a rhombus as an area of 72 ft and the product of the diagonals is 144. What is the length of each diagonal?

Answers

A = (1/2)(x)(y)

Let x = diagonal 1

Let y = diagonal 2

The product of xy = 144.

This means that x = 12 and y = 12.

So, 12 • 12 = 144

Each diagonal is 12 feet.

Prove:

72 feet = (1/2)(12)(12) feet

72 feet = (1/2)(144) feet

72 feet = 72 feet

To find the length of each diagonal of the rhombus, we'll use the relationship between the area of a rhombus and its diagonals. The formula for the area (A) of a rhombus in terms of its diagonals (d1 and d2) is given by:
\[ A = \frac{d1 \cdot d2}{2} \]
Additionally, we are given the product of the diagonals, which means:
\[ d1 \cdot d2 = 144 \]
Since we are also given the area of the rhombus, which is 72 square feet, we can write:
\[ 72 = \frac{d1 \cdot d2}{2} \]
\[ 144 = d1 \cdot d2 \]
We have two equations with two variables, which we can solve simultaneously. However, in this case, since both equations involve the product of d1 and d2, we can use the given product directly. We know that:
\[ 2 \cdot 72 = 144 \]
\[ d1 \cdot d2 = 144 \]
We can use a property of numbers that states that the product of two numbers is equal to the square of their average if and only if the two numbers are the same. However, here we are interested in finding two different numbers whose product is 144.
We can do this by breaking down 144 into pairs of factors and then checking which pair would satisfy the condition that their product divided by 2 is equal to 72. The pair of factors of 144 that add up to 144 when multiplied and divide to 72 when halved are the actual lengths of the diagonals.
One way to determine the pair is through the process of factoring 144:
\[ 144 = 1 \times 144 \]
\[ 144 = 2 \times 72 \]
\[ 144 = 3 \times 48 \]
\[ 144 = 4 \times 36 \]
\[ 144 = 6 \times 24 \]
\[ 144 = 8 \times 18 \]
\[ 144 = 9 \times 16 \]
\[ 144 = 12 \times 12 \]
We need to find two different factors since a rhombus's diagonals are not equal. Among the listed factors, the pair 18 and 8 satisfy the condition because:
\[ \frac{18 \cdot 8}{2} = \frac{144}{2} = 72 \]
So, the lengths of the diagonals of the rhombus are 18 feet and 8 feet.

Please help will give brainliest

Answers

ANSWER

r is not a set of ordered pair

EXPLANATION

A relation is a correspondence between two sets.

In a relation, the elements from one set set (domain) maps on to the elements in a second set(co-domain).

The relation can then be written as an ordered pair (x,y).

The given listing is

r={√3,√5,√7, √13}

This is not an ordered pair so it cannot be a relation.

The third choice is correct.

Answer:

Choice C is correct, r is not a set of ordered pairs

Step-by-step explanation:

A relation between sets of data is a collection of ordered pairs which contain one object from each set. If the element x is from the first set and its corresponding object y from the second set, then the objects are said to be related if the ordered pair (x,y) is in the relation.

X comprises of the domain while Y makes up the range.

Therefore, r is not a relation since it is not a set of ordered pairs.

Your phone service allows you to add international long distance to your phone. The cost is a $15 flat fee and then $.25 a minute for calls made. Write an explicit function rule describing your monthly cost for international calls.

Answers

C=$0.25m+$15 because 0.25 is the slope and 15 is the y-intercept.

C stands for Cost

M stands for Minute

Final answer:

The cost of international calls can be calculated using the explicit function rule C(m) = 15 + 0.25m, where m is the number of minutes and $15 is the flat fee.

Explanation:

The student asks for an explicit function rule that represents the monthly cost of international calls given a $15 flat fee and a rate of $0.25 per minute. To address this, we introduce a function where C(m) represents the total cost of making international calls for m minutes in a month.

The cost function is C(m) = 15 + 0.25m. The term $15 flat fee is the initial cost regardless of call duration, and $0.25 per minute is the variable rate that depends on the total minutes used.

If for example, a user talked for 100 minutes, the calculation would be C(100) = 15 + 0.25(100) = 15 + 25 = $40.

If f(x) = -7x+2 and g(x) = square root of x+3,
what is (fºg)(-2)?

Answers

Answer:

(fog)(-2)=-5

Step-by-step explanation:

Given

f(x)= -7x+2

and

g(x)= √(x+3)

For finding (fog)(-2), we have to find (fog)(x) first

In order to find (fog)(x) we will put the value of g(x) in f(x) in place of x.

(fog)(x)= -7g(x)+2

Putting the value of g(x)  

(fog)(x)= -7√(x+3)+2

We have to find (fog)(-2), so we have to put at the place of x in the composition

(fog)(-2)= -7√(-2+3)+2

(fog)(-2)= -7√1+2

= -7(1)+2

= -7+2

=-5

So,

(fog)(-2)=-5

For this case we have the following equations:[tex]f (x) = - 7x + 2\\g (x) = \sqrt {x + 3}[/tex]

We must find [tex](f_ {o} g) (x):[/tex]

By definition of composition of functions we have to:

[tex](f_ {o} g) (x) = f (g (x))[/tex]

So:

[tex](f_ {o} g) (x) = - 7 \sqrt {x + 3} +2[/tex]

Now, we find f (g (-2)):

[tex](f_ {o} g) (- 2) = - 7 \sqrt {-2 + 3} + 2 = -7 \sqrt {1} + 2 = -7 + 2 = -5[/tex]

ANswer:

-5

The result of subtracting (4x2-x) from -3x2 is

Answers

Answer:

Step-by-step explanation:

-3x²-(4x²-x)

=-3x²-4x²+x

=-7x²+x

Answer:

[tex]-7x^2+x[/tex]

Step-by-step explanation:

(4x2-x) from -3x2 is

Subtract [tex]4x^2-x from -3x^2[/tex]

[tex]-3x^2 - (4x^2-x)[/tex]

Remove the parenthesis by multiplying negative sign inside the parenthesis

[tex]-3x^2 - 4x^2+x[/tex]

Now combine like terms, add -3 and -4 and it becomes -7

[tex]-7x^2+x[/tex]

Ac is tangent to circle O at A. The diagram is not drawn to scale. If m by=52 degrees what is m yac?

A. 38°
B.64°
C.78°
D.104°

Answers

ANSWER

A. 38°

EXPLANATION

The tangent, AC to the circle meets the diameter AB to the circle at right angle.

This implies that,

[tex]m \angle BAY + m \angle YAC = 90 \degree[/tex]

Substitute the given angle:

[tex]52 \degree + m \angle YAC = 90 \degree[/tex]

[tex]m \angle YAC = 90 \degree - 52 \degree[/tex]

[tex]m \angle YAC = 38 \degree[/tex]

Using the tangent theorem and the inscribed angle theorem, m∠YAC is: A. 38°

What is the Tangent Theorem?

According to the tangent theorem, a right angle (90°) is formed at the point of intersection between the radius and the tangent of a circle.

m∠BAY = m(BY) = 52° (inscribed angle theorem)

m∠BAC = 90° (tangent theorem)

m∠YAC = m∠BAC - m∠BAY

Substitute

m∠YAC = 90 - 52 = 38°

Learn more about the tangent theorem on:

https://brainly.com/question/9892082

#SPJ5

PLEASE ANSWER RIGHT AWAY

Answers

ANSWER

[tex]a_{7}= - 20[/tex]

EXPLANATION

The sequence is defined recursively by:

[tex]a_{n+1}=-2a_n+4[/tex]

Where

[tex]a_1=1[/tex]

[tex]a_{2}=-2a_1+4[/tex]

[tex]a_{2}=-2(1)+4 = 2[/tex]

[tex]a_{3}=-2a_2+4[/tex]

[tex]a_{3}=-2(2)+4 = 0[/tex]

[tex]a_{4}=-2a_3+4[/tex]

[tex]a_{4}=-2(0)+4 = 4[/tex]

[tex]a_{5}=-2a_4+4[/tex]

[tex]a_{5}=-2(4)+4 = - 4[/tex]

[tex]a_{6}=-2a_5+4[/tex]

[tex]a_{6}=-2( - 4)+4 = 12[/tex]

[tex]a_{7}=-2a_6+4[/tex]

[tex]a_{7}=-2(12)+4 = - 20[/tex]

Problem: A fair coin is flipped nine times and the numbers of heads are counted. Question: What is the variance for this distribution?
5 points
2.25
0.5
4.5
9

Answers

Answer: Option A

[tex]\sigma ^ 2 = 2.25[/tex]

Step-by-step explanation:

The number of faces obtained by flipping the coin 9 times is a discrete random variable.

If we call this variable x, then, the probability of obtaining a face in each test is p.

Where [tex]p = 0.5[/tex]

If we call n the number of trials then:

[tex]n = 9[/tex]

The distribution of this variable is binomial with parameters

[tex]p = 0.5\\\\n = 9[/tex]

For a binomial distribution, the variance "[tex]\sigma^2[/tex]" is defined as

[tex]\sigma ^ 2 = np(1-p)[/tex]

[tex]\sigma ^ 2 = 9(0.5)(1-0.5)[/tex]

[tex]\sigma ^ 2 = 9(0.5)(0.5)[/tex]

[tex]\sigma ^ 2 = 2.25[/tex]

Can you help me with this? Please and thank you.

Answers

10 in Actual 35 ft

20 in Actual 70ft

Part B 735 dollars

I
ESPOO
1. A cylindrical swimming pool has a diameter 32 of feet and a height of 7 feet. About how many gallons of
water can the pool contain? Round your answer to the nearest whole number. (1 ft - 7.5 gal​

Answers

Answer:

42,223 gallons

Step-by-step explanation:

Find the volume of the pool and then multiply that by the conversion factor 1 ft³: 7.5 gallons.

If the pool diameter is 32 feet, then the pool radius is 16 feet.

The volume here is V = πr²h, or V = π(16 ft)²(7 ft) = 5629.73 ft³

Multiplying this volume by 1 ft³: 7.5 gallons, we get:

(5630 ft³)(7.5 gallons / 1 ft³) = 42,223 gallons

1) In a geometric progression, the first term
is 21 and the subsequent terms are
determined by multiplying the preceding
term by 2. What is the sum of the first 25
terms of this sequence?

A. 176,160,763
B. 352,321,525
C. 704,643,051
D. 724,897,062​

Answers

[tex]\bf \qquad \qquad \textit{sum of a finite geometric sequence} \\\\ S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ r=\textit{common ratio}\\ \cline{1-1} a_1=21\\ r=2\\ n=25 \end{cases} \\\\\\ S_{25}=21\left( \cfrac{1-2^{25}}{1-2} \right)\implies S_{25}=21\left( \cfrac{-33554431}{-1} \right) \\\\\\ S_{25}=21(33554431)\implies S_{25}=704643051[/tex]

The first four terms of a sequence are shown. 16, 48, 144, 432, ...
What is the common ratio, r, for this sequence?



new question
What is the average rate of change of the function below on the interval from x=-1 and x=1?

g(x)=50(12)x
If necessary, write your answer as a decimal.


New Question
Which function’s graph has a y-intercept of 1?

Question 3 options:

h(x)=0.5(2)x+0.5

h(x)=(0.5)x+1

h(x)=5(2)x

h(x)=5(0.5)x+0.5




New Question
Which ordered pairs lie on the graph of the exponential function f(x)=2(3)x?

Choose ALL correct answers.

Question 1 options:

(2,18)

(0,2)

(−1,1)

(3,56)


Answers

Answer:

First question: The common ratio r is 3

Second question: The average rate of change is 297.92

Third question: The function's graph of h(x) = 0.5(2^x) + 0.5 has a

y-intercept of 1

Fourth question: The ordered pairs lie on the graph of f(x) are (2 , 18)

and (0 , 2)

Step-by-step explanation:

First question:

* Lets revise the rule of the geometric sequence

- There is a constant ratio between each two consecutive numbers

- Ex:

# 5  ,  10  ,  20  ,  40  ,  80  ,  ………………………. (×2)

# 5000  ,  1000  ,  200  ,  40  ,  …………………………(÷5)

* General term (nth term) of a Geometric sequence:

- U1 = a  ,  U2  = ar  ,  U3  = ar2  ,  U4 = ar3  ,  U5 = ar4

- Un = ar^n-1, where a is the first term , r is the constant ratio

 between each two consecutive terms  and n is the position

 of the term in the sequence

* Now lets solve the question

∵ The sequence is 16 , 48 , 144 , 432 , ................

∵ a = 16

∵ ar = 48

∴ r = 48/16 = 3

∴ The sequence is geometric withe common ratio 3

* The common ratio r is 3

Second question:

* Lets revise the average rate of change of a function

- When you calculate the average rate of change of a function,

  you are finding the slope of the secant line between the two points

  on the function

- Average Rate of Change  for the function y = f (x) between

 x = a and x = b is:

 change of y/change of x = [f(b) - f(a)]/(b - a)

* Now lets solve the problem

∵ g(x) = 50(12^x), where x ∈ [-1 , 1]

∵ a = -1 and b = 1

∵ f(-1) = 50(12^-1) = 50/12

∵ f(1) = 50(12^1) = 600

∴ Average Rate of Change  = [600 - 50/12]/[1 - (-1)]

∴ Average Rate of Change  = [595.8333]/[2] = 297.92

* The average rate of change is 297.92

Third question:

* Lets talk about the y- intercept

- When any graph intersect the y-axis at point (0 , c), we called

 c the y-intercept

- To find the y- intercept, substitute the value of x in the

  function by zero

* Now lets check which answer will give y- intercept = 1

∵ h(x) = 0.5(2^x) + 0.5 ⇒ put x = 0

∴ h(0) = 0.5(2^0) + 0.5 = 0.5(1) + 0.5 = 1

∵ h(x) = (0.5)^x + 1 ⇒ put x = 0

∴ h(0) = (0.5)^0 + 1 = 1 + 1 = 2

∵ h(x) = 5(2^x) ⇒ put x = 0

∴ h(0) = 5(2^0) = 5(1) = 5

∵ h(x) = 5(0.5)^x + 0.5

∴ h(0) = 5(0.5)^0 + 0.5 = 5(1) + 0.5 = 5.5

* The function's graph of h(x) = 0.5(2^x) + 0.5 has a y-intercept of 1

Fourth question:

* Lets study how to find a point lies on a graph

- When we substitute the value of x of the point in the function

 and give us the same value of y of the point, then the point

 lies on the graph

* Now lets solve the problem

∵ f(x) = 2(3)^x

∵ The point is (2 , 18) ⇒ put x = 2

∴ f(2) = 2(3)² = 2(9) = 18 ⇒ the same y of the point

∴ The point (2 , 18) lies on f(x)

∵ The point is (0 , 2) ⇒ put x = 0

∴ f(0) = 2(3)^0 = 2(1) = 2 ⇒ the same y of the point

∴ The point (0 , 2) lies on f(x)

∵ The point is (-1 , 1) ⇒ put x = -1

∴ f(-1) = 2(3)^-1 = 2(1/3) = 2/3 ⇒ not the same y of the point

∴ The point (-1 , 1) does not lie on f(x)

∵ The point is (3 , 56) ⇒ put x = 3

∴ f(3) = 2(3)³ = 2(27) = 54 ⇒ not the same y of the point

∴ The point (3 , 56) does not lie on f(x)

* The ordered pairs lie on the graph of f(x) are (2 , 18) and (0 , 2)

Answer:

3eeddw

Step-by-step explanation:

Over the past 15 years, a business owner has made at most $4,000 in profits each week .Which graph represents the business owner's possible profits each week ? I chose the last one , am I correct?​???

Answers

The graph fourth represents the inequality x ≤ 4000 if in the past 15 years, a business owner has made at most $4,000 in profits each week option fourth is correct.

What is inequality?

It is defined as the expression in mathematics in which both sides are not equal they have mathematical signs either less than or greater than, known as inequality.

We have:

Over the past 15 years, a business owner has made at most $4,000 in profits each week.

So the peak value is $4,000

Let's suppose the business owner earns $x profit each week, then we can frame an inequality:

x ≤ 4000

From the above inequality, the value of x will be:

x belongs to (0, 4000)

Thus, the graph fourth represents the inequality x ≤ 4000 if in the past 15 years, a business owner has made at most $4,000 in profits each week option fourth is correct.

Learn more about the inequality here:

brainly.com/question/19491153

#SPJ2

The surface area of sphere T is 452.16 units squared. The surface area of sphere X is 1808.64 units squared. how many times larger is the radius of sphere X than the radius of sphere T?

Answers

Answer:

the radius of sphere X is 2 times larger than the radius of sphere T

Step-by-step explanation:

Given

Surface area of sphere, T =452.16

Surface area of sphere, X= 1808.64

how many times larger is the radius of sphere X than the radius of sphere T?

Finding radius of both spheres:

Surface area of sphere is given as

A=4πr^2

Now putting value of Ta=452.16 in above formula

452.16=4πrt^2

rt^2=452.16/4π

rt^2=35.98

Taking square root on both sides

rt=5.99

Now putting value of Xa=1808.64 in above formula

1808.64=4πrx^2

rx^2=1808.64/4π

rx^2=143.92

Taking square root on both sides

rx=11.99

Comparing radius of sphere X and the radius of sphere T

rx/rt=11.99/5.99

      = 2.00

rx=2(rt)

Hence the radius of sphere X is 2 times larger than the radius of sphere T!

Hello!

The answer is:

The radius of the  sphere X is 2 times larger than the radius of the sphere T

Why?

To solve the problem, we need to find the radius of both spheres using the following formula:

[tex]Area=\pi *radius^{2}\\\\radius=\sqrt{ \frac{Area}{\pi }}[/tex]

Where,

Area, is the area of the circle.

r, is the radius of the circle.

So,

We are given:

[tex]T_{area}=452.16units^{2}\\X_{area}=1808.64units^{2}[/tex]

Now, calculating we have:

For the sphere X,

[tex]X_{radius}=\sqrt{ \frac{X_{area}}{\pi }}=\sqrt{\frac{1808.64units^{2} }{\pi } }\\\\X_{radius}=\sqrt{\frac{1808.64units^{2} }{\pi }}=\sqrt{575.71units^{2} }=23.99units[/tex]

For the sphere T,

[tex]T_{radius}=\sqrt{ \frac{T_{area}}{\pi }}=\sqrt{\frac{452.16units^{2} }{\pi } }\\\\X_{radius}=\sqrt{\frac{452.16units^{2} }{\pi }}=\sqrt{143.93units^{2} }=11.99units[/tex]

Then, dividing the radius of the X sphere by the  T sphere to know the ratio (between their radius), we have:

[tex]ratio=\frac{23.99units}{11.99units}=2[/tex]

Hence, we have the radius of the sphere X is 2 times larger than the radius of the sphere T.

Have a nice day!

Data Set A: 3, 5, 7, 10, 10, 4, 7, 5, 8, 10, 6. Find the median Hint: Arrange them in ascending order first!

Answers

The median of these numbers is: 7

3,4,5,5,6,7,7,8,10,10,10

Answer:

the median would be 7

Step-by-step explanation:

*Help* Whats The Answer To This Graph?

Answers

Answer:

C. The growth factor of g is twice the growth factor of f.

Step-by-step explanation:

Let's find the growth factor of g(x) by getting its equation. To do it, we are using the standard exponential equation:

[tex]y=a(b+1)^x[/tex]

where

[tex]a[/tex] is the initial value

[tex]b[/tex] is the growth factor

We know form our graph that g(x) passes throughout (0, 3), so [tex]x=0[/tex] and [tex]y=3[/tex].

Replacing values

[tex]3=a(b+1)^0[/tex]

[tex]3=a(1)[/tex]

[tex]a=3[/tex]

We also know from our graph the g(x) passes throughout (1, 12), so [tex]x=1[/tex] and [tex]y=12[/tex].

Replacing values

[tex]y=a(b+1)^x[/tex]

[tex]12=3(b+1)^1[/tex]

[tex]12=3(b+1)[/tex]

[tex]b+1=\frac{12}{3}[/tex]

[tex]b+1=4[/tex]

[tex]b=4-1[/tex]

[tex]b=3[/tex]

The growth factor of g(x) is 4.

Now, to find the growth factor of f(x), we just need to equate 1+b with [tex]\frac{5}{2}[/tex] and solve for b:

[tex]1+b=\frac{5}{2}[/tex]

[tex]b=\frac{5}{2} -1[/tex]

[tex]b=\frac{3}{2}[/tex]

[tex]b=1.5[/tex]

Finally, we can divide the growth factor of g(x) by the growth factor of f(x) to find how many times bigger is the growth factor of g(x):

[tex]\frac{3}{1.5} =2[/tex]

We can conclude that the growth factor of g is twice the growth factor of f.

Answer:

C

Step-by-step explanation:


If each stack of coins has the same height, which stack of coins has the greatest volume?

Answers

Answer:

It all depends on the type of coins stacked

The stack of coins with the greatest volume is the one with the largest number of coins and the largest diameter.

Final Answer: The stack of coins with the greatest volume is the one with the largest number of coins and the largest diameter.

To calculate the volume of a stack of coins, we can use the formula for the volume of a cylinder,[tex]V = πr^2h,[/tex] where V is the volume, r is the radius of the coin, and h is the height of the stack.

Since each stack has the same height, we only need to compare the volumes based on the number of coins and their diameter.

First, let's assume the radius of each coin is r and the height of each stack is h. Let's denote the number of coins in each stack as n.

Now, let's calculate the volume for each stack:

1. Stack 1: Volume = [tex]πr^2 * h * n1[/tex]

2. Stack 2: Volume = [tex]πr^2 * h * n2[/tex]

3. Stack 3: Volume = [tex]πr^2 * h * n3[/tex]

Since all stacks have the same height (h), we can disregard it in the comparison.

To compare the volumes, we need to compare the number of coins (n) and the radius of the coins (r).

Let's assume Stack 1 has the largest number of coins, followed by Stack 2 and then Stack 3.

If all stacks have the same number of coins, then the one with the largest diameter (which is the radius times 2) would have the greatest volume.

After calculating the volumes for each stack, we can determine which stack has the greatest volume based on the number of coins and their diameter.

Complete question:

If each stack of coins has the same height, which stack of coins has the greatest volume?

Can you show how you did it?
8.31 - 3.43 =

Answers

Answer:

4.68

Step-by-step explanation:

Remember to line up the decimal point. Subtract as ordinarily.

8.31

-3.43

--------

4.68

4.68 is your answer

~

Picking a purple marble from a jar with 10 green and 10 purple answer in simplest form

Answers

Answer:

not really sure what answer you want. but you have a 50/50 chance of picking a green or purple marble.

Step-by-step explanation:

Answer:

10/20 = 1/2

Step-by-step explanation:

There are 10 purple marbles and 20 marbles in total. The chances of picking a purple marble is 10/20. 10/20 simplifies to 1/2.

1) simplify the ratio 15:9:6
2) simplify the ratio 16:20
3) simplify the ratio 36:30
4) simplify the ratio 12:30:24
5) simplify the ratio 12:30
6) simplify the ratio 56:40
7) simplify the ratio 12:4:8
8) simplify the ratio 7.0:4.2
9) simplify the ratio 3:4.5
10) simplify the ratio 1.2:3:2.4

Answers

Answer:

1. 5:3:2

2. 4:5

3. 6:5

4. 2:5:6

5. 2:5

6. 7:5

7. 3:1:2

8. 1.0:0.6

9. 1:1.5

10. 0.2:0.5:0.8

Step-by-step explanation:

1. divide everything by 3

2. divide everything by 4

3. divide everything by 6

4. divide everything by 6

5. divide everything by 6

6. divide everything by 8

7. divide everything by 4

8. divide everything by 7

9. divide everything by 3

10. divide everything by 6

Answer::

1. 5:3:2

2. 4:5

3. 6:5

4. 2:5:6

5. 2:5

6. 7:5

7. 3:1:2

8. 1.0:0.6

9. 1:1.5

10. 0.2:0.5:0.8

I hope this helps! :-)

if f(x)=5x+7 and g(x)=√x+6, which statement is true?

A.) 9 is not in the domain of f ° g
B.) 9 is in the domain of f ° g

Answers

Answer:

Statement b is true; statement a is false

Step-by-step explanation:

Best to write out (f o g)(x) and then determine its domain:

"(f o g)(x)" indicates that g(x) is used as the input to f(x):

(f o g)(x) = 5(√x+6) + 7, or 5√x + 30 + 7, or 5√x + 37.

The domain of this composite function is [0, infinity).

Thus, statement b is true:  "9 is part of the domain of (f o g)(x) = 5(√x+6) + 7"

To determine which statement is true, we will need to look at the functions f(x) and g(x) and their composition (f ° g)(x), which means we plug g(x) into f(x).
The given functions are:
f(x) = 5x + 7
g(x) = √x + 6
The composition of the functions (f ° g)(x) is f applied to g(x), which would be:
(f ° g)(x) = f(g(x)) = f(√x + 6)
This simplifies to:
(f ° g)(x) = 5(√x + 6) + 7
To be able to plug a number into (f ° g)(x), it must first be in the domain of g(x), and then the result of g(x) must be in the domain of f(x). The domain of g(x) is defined by the set of all x for which g(x) is real and defined. Since g(x) includes a square root, x must be non-negative (x ≥ 0). For f(x), the domain is all real numbers since linear functions are defined for all real x.
So, to determine if 9 is in the domain of (f ° g)(x), we will do the following:
1. Verify if 9 is in the domain of g(x). Since the domain of g(x) includes all x ≥ 0 and 9 ≥ 0, 9 is in the domain of g(x).
2. Calculate g(9) to determine if the output is within the domain of f(x):
  g(9) = √9 + 6
  g(9) = 3 + 6 (because √9 is 3)
  g(9) = 9, which is a real number and thus in the domain of f(x).
3. Since we have that g(9) is in the domain of f(x), we can compute (f ° g)(9):
  (f ° g)(9) = f(g(9))
  (f ° g)(9) = f(9)
  (f ° g)(9) = 5 * 9 + 7
  (f ° g)(9) = 45 + 7
  (f ° g)(9) = 52
Thus, we have found that 9 is in the domain of g(x), and that (f ° g)(9) is defined and equals 52. This means that statement B, "9 is in the domain of f ° g," is true.

What is the geometric mean of the pair of numbers? 245 and 5

Answers

Answer:

35

Step-by-step explanation:

The geometric mean of n numbers is the n-th root of their product.

The geometric mean of these two numbers is ...

√(245·5) = √1225 = 35

Answer:

35

Step-by-step explanation:

Take the product of the two numbers, then get the square root of the product.

[tex]245*5=1225\\\sqrt{1225} = 35[/tex]

What is the surface area of the square pyramid?

Answers

Answer:

C. 71.2 in²

Step-by-step explanation:

We have the square in the base with side a = 4in and four triangles with base a = 4in and height h = 6.9in.

The formula of an area of a square:

A = a²

Substitute:

As = 4² = 16 in²

The formula of an area of a triangle:

A = (ah)/2

Substitute:

At = [(4)(6.9)]/2 = 27.6/2 = 13.8 in²

The Surface Area:

S.A. = As + 4At

Substitute:

S.A. = 16 + 4(13.8) = 16 + 55.2 = 71.2 in²

Max walks 6 laps around the track in 30 minutes. How many laps around the track does Max walk in 1 minute

Answers

Answer:5

Step-by-step explanation:

6:30 is the ration

6/30 reduced is 1/5

1:5

so its 5

Final answer:

Max walks 0.2 laps per minute around the track. This conclusion was reached by dividing the total number of laps (6) by the total number of minutes (30).

Explanation:

The Mathematics problem posed is one concerning rates. It is given that Max walks 6 laps in 30 minutes. We need to find out how many laps would Max be able to walk in 1 minute.

To do this, we divide the total number of laps walked by the total number of minutes. In this case, we would divide 6 laps by 30 minutes.

6 laps ÷ 30 minutes = 0.2 laps per minute

Therefore, Max walks 0.2 laps around the track in 1 minute.

Learn more about Rates here:

https://brainly.com/question/30354032

#SPJ3

A survey found that 4 out of 100 people have red hair. On the basis of this survey, how many people in a group of 12,000 people are likely to have red hair

Answers

Answer:

480

Step-by-step explanation:

Answer:

480

Step-by-step explanation:

4/100 is 4% so find 4% of 12,000

12,000(.04) = 480

Find the least common denominator for these two rational expressions Please!!!!

Answers

Answer:

(x + 2)²(x - 1)

Step-by-step explanation:

Factorise the denominators of both fractions

x² + 4x + 4 ← is a perfect square = (x + 2)²

x² + x - 2 = (x + 2)(x - 1)

The fractions can be expressed as

[tex]\frac{x(x-1)}{(x+2)^2(x-1)}[/tex] and [tex]\frac{2(x+2)}{(x+2)^2(x-1)}[/tex]

least common multiple is (x + 2)²(x - 1)

Use the graph of the polynomial function to find the factored form of the related polynomial. Assume it has no constant factor.

Answers

Answer:

A. (x - 1)(x - 8)

Step-by-step explanation:

By looking at the graph, we can see that the polynomial has roots at x = 1 and 8. This means that the function in factored form would look like (x - 1)(x - 8).

Answer:

A) (x - 1)(x - 8)

Step-by-step explanation:

Apex

find x
13+6+2x-18=4x-29​

Answers

Answer:

x = 15

Step-by-step explanation:

Answer:

x = 15

Step-by-step explanation:

13+6+2x-18=4x-29​

Combine like terms

2x + 1 = 4x - 29

Subtract 4x from both sides

-2x + 1 = - 29

Subtract 1 from both sides

-2x = -30

Divide both sides by -2

x = 15

Find the median, first quartile, third quartile, interquartile range, and any outliers for each set of data.


14.6, 28.1, 3.9, 7.1, 5.3, 30.9, 2.8, 6.5, 20.8, 16.4, 16.4, 27.1, 53.5, 12.5, 6.1

Answers

Here is what i figured out.

Answer:

First, to find the median, we have to order all numbers, from least to highest:

2.8; 3.9; 5.3; 6.1; 6.5; 7.1; 12.5; 14.6; 16.4; 16.4; 20.8; 27.1; 28.1; 30.9; 53.5

Now, we calculate the position of each quartile:

[tex]Q_{k}=\frac{k(n+1)}{4}\\Q_{1}=\frac{1(15+1)}{4}=4\\Q_{2}=\frac{2(15+1)}{4}=8\\Q_{3}=\frac{3(15+1)}{4}=12[/tex]

So, the first quartile is in the fourth position, the thirds quartile is in the twelfth position:

So, first quartile is 6.1. Second quartile is 14.6, and the third quartile is 27.1.

It's important to remember that the second quartile is the median. So the median is 14.6

Lastly, the interquartile range is the difference between the third and first quartile. So:

[tex]Q_{3}-Q_{1}=27.1-6.1=21[/tex]

Therefore, the interquartile range is 21.

Other Questions
the first thats do 2 will get brainlist Some animals, like birds, reproduce by fusion of cells.Before a bird hatches, what protects the bird as it develops? A. the warmth of the sunlight B. the thin shell of the egg C. the nutrients from its mother's body D .the hard shell of the egg Please Help!!!!Will mark brainliest. Thank you so much for your help what is the term used for a medical procedure that results in the termination of a pregnancy? a) stillbirth b) miscarriage c) live birth d) abortion Which statement best describes the electronegativity of an element?A. Electronegativity of an atom is its ability to lose electrons during cation formation.B. Electronegativity of an atom is its ability to share electrons during a covalent bond formation.C. Electronegativity of an atom is its ability to gain electrons during anion formation.D. Electronegativity of an atom is its ability to produce energy while losing an electron.E. Electronegativity of an atom is its ability to attract electrons during bond formation. a ball is thrown with a slingshot at a velocity of 110ft/sec at an angle of 20 degrees above the ground from a height of 4.5 ft. approximentaly how long does is take for the ball to hit the ground. Acceleration due to gravity is 32ft/s^2 Which of the following statements is not true?A. Lutheran chorales were tunes that had been composed in the sixteenth and seventeenth centuries or had been adapted from folk songs and Catholic hymns.B. In a sense, the cantata was a sermon in music that reinforced the ministers sermon.C. When chorale melodies were harmonized for church choirs, the tune was assigned to the tenors.D. The cantata of Bachs day might last 25 minutes and contain several different movements, including choruses, recitatives, arias, and duets. Which of the following samples will have the greatest volume at STP?22 g CO 22 g He 22 g O222 g Cl2All of these samples would have the same volume at STP. Read this excerpt from Steve Jobs: The Man Who Thought Different."I wanted to read books because I loved reading and I wanted to go outside and chase butterflies."Who is the speaker in this excerpt?Paul JobsClara JobsPatty JobsSteve Jobs What is the slope-intercept form for the equation of the line passing through (-3,4) and having a slope of 5/6?Begin answer with y=I'd like to figure out how to do the answers following this one by myself so if you can, please explain? The table of values represents the function g(x) and the graph shows the function f(x). Mr.Fraser asked four students in his class to find the greatest common factor of 24 and 36. Donte answered 2,Annika answered 3,Noelia answered 6,and Scott answered 12. Which student answered correctly? What is the range of the function y=2e^x-1all real numbers less than 1all real numbers greater than 1all real numbers less than 1all real numbers greater than 1 What was the 54th regiment, and what was different/special about this group of men? What is most likely true about the disappearance of Mrs. Winterbottom?A.She is tired of being ignored by her family.B.She does not regret having made the decision to leave.C.She had been planning and preparing to leave for some time.D.She does not intend to return to her family anytime soon.Anyone who read Walk Two Moons, please help me ASAP! A suitable subject for a research paper is one that is interesting to the writer, one that merits extensive research, one that can be thoroughly developed in the length required, and one that is capable of being adequately ________ with available resources. The man took strong sharp sudden bites, just like the dog.The figurative language in this excerpt serves to A. describe the convict's outward appearance. B. highlight the differences between Pip and the convict. C. use personification to catch the reader's attention. D. emphasize the convict's desperation and hunger. In the United States dollar bill, nickels, and dimes areA. Representative money.B. Commodity money.C.Various currencies.D. Different denominations. Solve 8 sin ( 5 x ) = 3 for the two smallest positive solutions a and b, with a < b Find the value of x. Round to the nearest tenth.PLEASE HELP ME!! Steam Workshop Downloader