Original price $60 markup 15%

Answers

Answer 1

When you mark up a price, multiply the original price by 1 plus the amount of the mark up as a decimal.

15% = 0.15 + 1 = 1.15

$60 x 1.15 = $69

Answer 2

The correct answer is $69 Start by putting 15 into a decimal


Related Questions

"Solve the problem of exponential growth. According to the U.S. Census Bureau, the population of the United States in 2010 was 308 million. This is a 9.6% increase over the 2000 count. Assuming this continued what would the population be in 2030?"

Answers

Answer:

370 million

Step-by-step explanation:

In the 10 years from 2000 to 2010, the population was multiplied by the factor ...

100% + 9.6% = 109.6% = 1.096

In the next 20 years from 2010 to 2030, the population will be multiplied by that factor twice, if it grows at the same rate:

2030 population = (308 million)·(1.096²) ≈ 370 million

Answer:

370 million

Step-by-step explanation:

In the 10 years from 2000 to 2010, the population was multiplied by the factor ...

100% + 9.6% = 109.6% = 1.096

In the next 20 years from 2010 to 2030, the population will be multiplied by that factor twice, if it grows at the same rate:

2030 population = (308 million)·(1.096²) ≈ 370 million

Write the product of the monomials (8x6y)2 and (x3y4).

Answers

Answer:

The product of the monomials is 2304 [tex]x^{5}[/tex][tex]y^{6}[/tex]

Step-by-step explanation:

* Lets explain how to solve the problem

- We need to find the product of the monomials (8x 6y)² and

   [tex]x^{3}y^{4}[/tex]

- At first lets solve the power of the first monomial

- Because the power 2 is on the bracket then each element inside the

  bracket will take power 2

∵ (8x 6y)² = (8)²(x)²(6)²(y)²

∵ (8)² = 64

∵ (x)² = x²

∵ (6)² = 36

∵ (y)² = y²

∴ (8x 6y)² = [64x² × 36y²]

∵ 64 × 36 = 2304 x²y²

∴ The first monomial is 2304 x²y²

∵ The first monomial is 2304 x²y²

∵ The second monomial is [tex]x^{3}y^{4}[/tex]

- Lets find their product

- Remember in multiplication if two terms have same bases then we

  will add their powers

∵ [2304 x²y²] × [ [tex]x^{3}y^{4}[/tex] ] =

   2304 [ [tex]x^{2}*x^{3}[/tex] ] [ [tex]y^{2}*y^{4}[/tex] ]

∵ [tex]x^{2}*x^{3}[/tex] = [tex]x^{2+3}[/tex] = [tex]x^{5}[/tex]

∵ [tex]y^{2}*y^{4}[/tex] = [tex]y^{2+4}[/tex] = [tex]y^{6}[/tex]

∴ [2304 x²y²] × [ [tex]x^{3}y^{4}[/tex] ] = 2304 [tex]x^{5}[/tex][tex]y^{6}[/tex]

The product of the monomials is 2304 [tex]x^{5}[/tex][tex]y^{6}[/tex]

What is the value of x? Enter your answer in the box

Answers

Answer:

x = 20

Step-by-step explanation:

Formula

x1/x2 = x3/x4

Givens

x = 11

x2 = 11 + 121 = 132

x3 = 10

x4 = 10 + 5x + 10

Solution

11/132 = 10 / (5x + 10 + 10)        Combine

11/132 = 10/(5x + 20)                Cross multiply

11*(5x + 20) = 132 * 10              Combine on the right.

11(5x + 20 ) = 1320                   Divide by 11. (You could remove the brackets, but this is easier.

11(5x + 20)/11 = 1320/11            Do the division

5x + 20 = 120                          Subtract 20 from both sides

5x + 20-20 = 120 - 20             Combine

5x = 100                                   Divide by 5

5x/5 = 100/5

x = 20

A cylindrical container has a radius of 0.2 meter and a height of 1 meter. The container is filled with honey. The density of honey is 1417 kg/m³. What is the mass of the honey in the container? Enter your answer in the box. Use 3.14 for π . Round your final answer to the nearest whole number.

Answers

Answer:178

Step-by-step explanation: I took the test :)

Answer:

The mass of the container is 178 kg.

Step-by-step explanation:

Since, the volume of a cylinder is,

[tex]V=\pi (r)^2 h[/tex]

Where r is the radius of the cylinder

And, h is its height

Here, r = 0.2 meters,

h = 1 meter,

So, the volume of the cylindrical container is,

[tex]V=\pi (0.2)^2(1)[/tex]

[tex]=3.14\times 0.04=0.1256\text{ cubic meters}[/tex]

Now,

[tex]Density = \frac{Mass}{Volume}[/tex]

[tex]\implies Mass = Density\times Volume[/tex]

Given, Density of the container = 1417 kg/m³,

By substituting the values in the above formula,

[tex]\text{Mass of the container}=1417\times 0.1256=177.9752\text{ kg}\approx 178\text{ kg}[/tex]

What is the value of x?

Answers

Answer:

Step-by-step explanation:

When an angle is bisected the opposite sides and the sides of the bisected angle are in a set ratio.

That translates into

(x + 8)/10 = (2x - 5)/14            Cross multiply

14* (x + 8) = 10* (2x - 5)          Remove the brackets on both sides.

14x + 112 = 20x - 50               Subtract 14x from both sides.

112 = 20x - 14x - 50                Combine

112 = 6x - 50                           Add 50 to both sides.

112+50 = 6x - 50 + 50             Combine

162 = 6x                                   Switch

6x = 162                                   Divide by 6

x = 27

Please respond quickly!!

Answers

Answer:

Area of triangle = 6 in^2

Step-by-step explanation:

We need to find the area of triangle. The formula used is:

Area of triangle = 1/2 * b*h

where b=base and h= height

In the given question, b =2 and h= 6

Putting values in the formula:

Area of triangle = 1/2 *2*6

                          = 12/2

                          =  6 in^2

Answer:

The area is 6 in^2

Step-by-step explanation:

A ball is thrown vertically upward. After t seconds, its height h (in feet) is given by the function h(t)=72t-16t^2. What is the maximum height that the ball will reach?
Do not round your answer

Answers

Answer:

The maximum height that the ball will reach is 81 ft

Step-by-step explanation:

Note that the tray of the ball is given by the equation of a parabola of negative main coefficient. Then, the maximum value for a parabola is at its vertex.

For an equation of the form

[tex]at ^ 2 + bt + c[/tex]

So

the t coordinate of the vertice is:

[tex]t =-\frac{b}{2a}[/tex]

In this case the equation is:

[tex]h(t)=72t-16t^2[/tex]

So

[tex]a=-16\\b=72\\c=0[/tex]

Therefore

[tex]t =-\frac{72}{2(-16)}[/tex]

[tex]t=2.25\ s[/tex]

Finally the maximum height that the ball will reach is

[tex]h(2.25)=72(2.25)-16(2.25)^2[/tex]

[tex]h=81\ ft[/tex]

Final answer:

The ball thrown vertically upwards will reach the maximum height of 81 feet after 2.25 seconds.

Explanation:

To find the maximum height the ball will reach, first, we need to recognize that the equation 'h(t)=72t-16t^2' is a quadratic function in the form of 'f(t)=at^2+bt+c'. The maximum point of a quadratic function, also known as the vertex, happens at 't=-b/2a'. In this case, 'a' is -16 and 'b' is 72.

So the maximum height is achieved at 't=-72/(2*-16)' or 't=72/32 = 2.25' seconds.

To find out the maximum height, we just need to substitute this value of t into the equation for h(t):

h(2.25)=72*2.25-16*2.25^2

The above calculation gives a maximum height of 81 feet.

Learn more about Maximum height here:

https://brainly.com/question/29081143

#SPJ3

Charles factors the expression 4/3xy+1/3x using a factor of 1/3x. He writes the factored expression 1/3x(4y+1). Which best describes the accuracy of Charles solution?

A. His solution is accurate

B. His solution is inaccurate. The factor does not divide evenly into both terms.

C. His solution is inaccurate. The factoring of 4/3xy using the given GCF is incorrect.

D. His solution is inaccurate. The factoring of 1/3x using the given GCF is incorrect.

Answers

A. His solution is accurate

You can verify this by expanding his factored expression: 1/3x(4y+1), which gives you back the original expression 4/3xy+1/3x

Charles' solution is accurate because expression after factorization  is similar to Charles factor's of expression option (A) is correct.

What is an expression?

It is defined as the combination of constants and variables with mathematical operators.

We have an expression:

[tex]\rm = \dfrac{4}{3}xy+\dfrac{1}{3}x[/tex]

Taking common as (1/3)x

[tex]\rm = \dfrac{1}{3}x(4y+1)[/tex]

The above expression is similar to Charles factor's of expression.

Thus, Charles solution is accurate because expression after factorization  is similar to Charles factor's of expression option (A) is correct.

Learn more about the expression here:

brainly.com/question/14083225


#SPJ2

How do you simplify this expression step by step using trigonometric identities?

Answers

[tex]\bf \textit{Pythagorean Identities}\\\\ 1+tan^2(\theta)=sec^2(\theta) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ sec^2(\theta )cos^2(\theta )+tan^2(\theta )\implies \cfrac{1}{\begin{matrix} cos^2(\theta ) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix} }\cdot \begin{matrix} cos^2(\theta ) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix} +tan^2(\theta ) \\\\\\ 1+tan^2(\theta )\implies sec^2(\theta )[/tex]

What are the solutions to the system of equations?
x = x^2 - 4x +3
y = -x +3

( , ) and ( , )

Answers

Answer:

(0,3) and (3,0)

Step-by-step explanation:

The first thing to do is graph the two equations to see where they intersect. Then you know what answer to look for. The graph is below. It was done on desmos.

I take it the first equation is a typo and should be y = x^2 - 4x + 3

Equate the two equations.

-x + 3 = x^2 -4x + 3    Subtract 3 from both sides

-x = x^2 - 4x + 3-3

-x = x^2 - 4x                Add x to both sides.

0 = x^2 - 4x + x

0 = x^2 - 3x                Factor

0 = x(x - 3)

So x can equal 0

or x can equal 3

In either case the right side will reduce to 0.

Case 1. x = 0

y= - x + 3

y = 0 + 3

y = 3

So the point is (0,3)

Case 2. x = 3

y = - x + 3

y = - 3 + 3

y = 0

So the point is (3,0)

3. A prop for the theater club’s play is constructed as a cone topped with a half-sphere. What is the volume of the prop? Round your answer to the nearest tenth of a cubic inch. Use 3.14 to approximate pi. The Radius is 7 inches and the Height is 12.

Answers

The formula for volume of a cone is V = PI x r^2 x h/3 where r is the radius and h is the height.

Volume of cone = 3.14 x 7^2 x 12/3

Volume of cone = 3.14 x 49 x 4

Volume of cone = 615.44 cubic inches.

The formula for volume of half a sphere is : 1/2 x (4/3 x PI x r^3)

Volume for half sphere = 1/2 x (4/3 x 3.14 x 7^3)

= 1/2 x 4/3 x 3.14 x 343

= 718.01 cubic inches.

Total volume = 615.44 + 718.01 = 1333.45 cubic inches.

Rounded to the nearest tenth = 1,333.5 cubic inches.

Solve the equation of exponential decay. The population of a city is expected to be 440,000 in 2020. This is a decline of 12% from 2010 to 2020. Assuming this continued what would the population of the city be in 2040? Round to the nearest ten thousand

Answers

Answer:

about 340,000

Step-by-step explanation:

In 10 years, the population dropped to 0.88 of what it was in 2010. At the same rate, in 20 more years, it will drop to 0.88² of what it was in 2020:

2040 population = 440,000·0.88² ≈ 340,000

Answer:

about 340,000

Step-by-step explanation:

In 10 years, the population dropped to 0.88 of what it was in 2010. At the same rate, in 20 more years, it will drop to 0.88² of what it was in 2020:

2040 population = 440,000·0.88² ≈ 340,000

what is the sum of the fractions​

Answers

Answer:

[tex]6\frac{7}{9}[/tex]

Step-by-step explanation:

[tex]6\frac{2}{3}+\frac{1}{9} = 6\frac{6}{9}+\frac{1}{9}=6 \frac{7}{9}[/tex]

Answer:

Step-by-step explanation:

its D

Angle θ is in standard position. If (8, -15) is on the terminal ray of angle θ, find the values of the trigonometric functions.

Answers

ANSWER

[tex]\sin( \theta) = - \frac{15}{17} [/tex]

[tex]\csc( \theta) = - \frac{17}{15} [/tex]

[tex]\cos( \theta) = \frac{8}{17} [/tex]

[tex]\sec( \theta) = \frac{17}{8} [/tex]

[tex]\tan( \theta) = - \frac{15}{8} [/tex]

[tex]\cot( \theta) = - \frac{8}{15} [/tex]

EXPLANATION

From the Pythagoras Theorem, the hypotenuse can be found.

[tex] {h}^{2} = 1 {5}^{2} + {8}^{2} [/tex]

[tex] {h}^{2} = 289[/tex]

[tex]h = \sqrt{289} [/tex]

[tex]h = 17[/tex]

The sine ratio is negative in the fourth quadrant.

[tex] \sin( \theta) = - \frac{opposite}{hypotenuse} [/tex]

[tex]\sin( \theta) = - \frac{15}{17} [/tex]

The cosecant ratio is the reciprocal of the sine ratio.

[tex]\csc( \theta) = - \frac{17}{15} [/tex]

The cosine ratio is positive in the fourth quadrant.

[tex]\cos( \theta) = \frac{adjacent}{hypotenuse} [/tex]

[tex]\cos( \theta) = \frac{8}{17} [/tex]

The secant ratio is the reciprocal of the cosine ratio.

[tex]\sec( \theta) = \frac{17}{8} [/tex]

The tangent ratio is negative in the fourth quadrant.

[tex]\tan( \theta) = - \frac{opposite}{adjacent} [/tex]

[tex]\tan( \theta) = - \frac{15}{8} [/tex]

The reciprocal of the tangent ratio is the cotangent ratio

[tex]\cot( \theta) = - \frac{8}{15} [/tex]

Answer:

sin=-15/17

cos=8/7

tan=-15/8

csc=-17/15

sec=17/8

cot=-8/15

Given the function f(x)= -5+4x^2 calculate the following value:
f(a+h)
Please help ASAP!!! :(

Answers

Evaluating a function in a specific point means to substitute all occurrences of x with the specific value.

In your case, we have to substitute "x" with "a+h":

[tex]f(x)= -5+4x^2 \implies f(a+h) = -5+4(a+h)^2\\ = -5+4(a^2+2ah+h^2)=-5+4a^2+8ah+h^2[/tex]

Using the distributive property to find the product (y — 4)(y2 + 4y + 16) results in a polynomial of the form y3 + 4y2 + ay – 4y2 – ay – 64. What is the value of a in the polynomial?

Answers

Answer:

a=16

Step-by-step explanation:

Given

(y-4)(y^2+4y+16)

To find the value of a in the resulting polynomial we have to solve the given expression

=y(y^2+4y+16)-4(y^2+4y+16)

= y^3+4y^2+16y-4y^2-16y-64

To find the value of a, both the polynomials will be compared

y^3+4y^2+16y-4y^2-16y-64  

y^3+4y^2+ay-4y^2-ay-64

Comparing the coefficients of both polynomials gives us that

a=16

So, the value of a is 16 ..  

8) Factor each sum or difference of cubes completely.
a. 8x3 + 27

Answers

Answer:

[tex]\large\boxed{(2x+3)(4x^2-6x+9)}[/tex]

Step-by-step explanation:

[tex]8=2^3\\\\8x^3=2^3x^3=(2x)^3\\\\27=3^3\\\\8x^3+27=(2x)^3+3^3\qquad\text{use}\ a^3+b^3=(a+b)(a^2-ab+b^2)\\\\=(2x+3)\bigg((2x)^2-(2x)(3)+3^2\bigg)=(2x+3)(4x^2-6x+9)[/tex]

Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that Rn(x) ? 0.]f(x) = 10/x , a= -2f(x) = \sum_{n=0}^{\infty } ______Find the associated radius of convergence R.R = ______

Answers

Rewrite [tex]f[/tex] as

[tex]f(x)=\dfrac{10}x=-\dfrac5{1-\frac{x+2}2}[/tex]

and recall that for [tex]|x|<1[/tex], we have

[tex]\displaystyle\frac1{1-x}=\sum_{n=0}^\infty x^n[/tex]

so that for [tex]\left|\dfrac{x+2}2\right|<1[/tex], or [tex]|x+2|<2[/tex],

[tex]f(x)=-5\displaystyle\sum_{n=0}^\infty\left(\frac{x+2}2\right)^n[/tex]

Then the radius of convergence is 2.

Final answer:

The Taylor series for the function f(x) = 10/x, centered at a = -2, is given by the formula  ∑(10(-1)^n*n!(x + 2)^n)/n! from n=0 to ∞. The radius of convergence (R) for the series is ∞, which means the series converges for all real numbers x.

Explanation:

Given the function f(x) = 10/x, we're asked to find the Taylor series centered at a = -2. A Taylor series of a function is a series representation which can be found using the formula f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + .... For f(x) = 10/x, the Taylor series centered at a = -2 will be ∑(10(-1)^n*n!(x + 2)^n)/n! from n=0 to ∞. The radius of convergence R is determined by the limit as n approaches infinity of the absolute value of the ratio of the nth term and the (n+1)th term. This results in R = ∞, indicating the series converges for all real numbers x.

Learn more about Taylor series here:

https://brainly.com/question/36772829

#SPJ3

This Venn diagram shows sports played by 10 students

Let event A - The student plays basketball.
Let event B - The student plays soccer.
What is P(AB)?

Answers

Answer:

B. 1/10 or 0.10

Step-by-step explanation:

The question asks what's the probability that a student picked randomly will be playing both basketball and soccer.

The answer is right in the diagram.

We have only one student who plays both basketball and soccer: Ella

Since we have 10 students in the selected group, the probably you'll pick Ella is:

1 / 10 = 0.10 = 10%

So, the answer is B.

The value of P(A/B) is 0.33.

Given that, the Venn diagram shows sports played by 10 students.

What is P(A/B)?

P(A/B) is known as conditional probability and it means the probability of event A that depends on another event B. It is also known as "the probability of A given B". The formula for P(A/B)=P(A∩B) / P(B).

Now, P(A/B)=1/3≈0.33

Therefore, the value of P(A/B) is 0.33.

To learn more about the Venn diagram visit:

https://brainly.com/question/1605100.

#SPJ5

Corey bought 2 1/2 liters of paint for $60. What was the cost per liter of paint

Answers

Hello there!

Answer:

$24

Step-by-step explanation:

In order to find the answer to your problem, we're going to need to find out how much ONE liter of paint costs.

Lets gather the information of what we know:

2 1/2 liters of paint

↑ Cost $60.

With the information we know, we can solve to find the answer.

In order to get the answer, we would need to divide 60 by 2 1/2 (or 2.5). We would need to do this because when we divide it, it would allow us to get the cost for 1 liter.

Lets solve:

[tex]60 \div 2.5=24[/tex]

When you divide, you should get the answer of 24.

This means that one liter of paint cost $24.

$24 should be your FINAL answer.

Answer:

$24/liter

Step-by-step explanation:

Write the the dollar amount first and the paint volume second in this ratio:

 $60.00

--------------- = $24/liter

2.5 liters

     

Joan Arlington has twice as much money invested at 5% simple annual interest as
she does at 4%. If her yearly income from the two investments is $399, how much
does she have at each rate?
at each rate?


Please Help me ​

Answers

[tex]5 \div 100 \times 399 \times 1 = 19.95 \: and \: 4 \div 100 \times 399 \times 1 = 15.96[/tex]

The recursive rule for a geometric sequence is given. a1=2; an=1/3a subscript (n−1) Enter the explicit rule for the sequence. an=

Answers

ANSWER

[tex]a_n=2{( \frac{1}{3}) }^{n-1}[/tex]

EXPLANATION

The recursive formula is given as:

[tex]a_n= \frac{1}{3} a_{n-1}[/tex]

where

[tex]a_1=2[/tex]

The explicit rule is given by:

[tex]a_n=a_1 {r}^{n-1}[/tex]

From the recursive rule , we have

[tex]r = \frac{1}{3} [/tex]

We substitute the known values into the formula to get;

[tex]a_n=2{( \frac{1}{3}) }^{n-1}[/tex]

Therefore, the explicit rule is:

[tex]a_n=2{( \frac{1}{3}) }^{n-1}[/tex]

how much string is left when 1 and 3/4 in are cut from a piece measuring 3 and 1 /6 inches​

Answers

Answer:

1 5/12 inches.

Step-by-step explanation:

That is 3 1/6 - 1 3/4

= 19/6 - 7/4

The lowest common denominator of 4 and 6 is 12, so we have:

38/12 - 21/12

= 17 /12

= 1 5/12 inches (answer).

The remaining string length after cutting [tex]\(1 \frac{3}{4}\)[/tex] inches is [tex](1 \frac{5}{16}\)[/tex]inches.

The correct option is (a).

find out how much string is left when [tex]\(1 \frac{3}{4}\)[/tex] inches are cut from a piece initially measuring[tex]\(3 \frac{1}{16}\)[/tex]inches.

1. Convert the mixed numbers to improper fractions:

[tex]- \(1 \frac{3}{4}\) inches = \(\frac{7}{4}\) inches[/tex]

[tex]- \(3 \frac{1}{16}\) inches = \(\frac{49}{16}\) inches[/tex]

2. Make the denominators equal:

  - Multiply the numerator and denominator of [tex]\(\frac{7}{4}\)[/tex]by 16 to make the denominators equal:

[tex]\(\frac{7}{4} = \frac{112}{64}\)[/tex]

  - Now we have:

    - Initial length = [tex]\(\frac{49}{16}\)[/tex] inches

    - Cut length = [tex]\(\frac{112}{64}\)[/tex] inches

3. Subtract the two fractions:

  - Subtract the cut length from the initial length:

[tex]\(\frac{49}{16} - \frac{112}{64}\)[/tex]

  - To subtract, we need a common denominator. The least common multiple (LCM) of 16 and 64 is 64.

 - Convert both fractions to have a denominator of 64:

[tex]\(\frac{49}{16} = \frac{196}{64}\)[/tex]

[tex]\(\frac{112}{64}\) remains the same.[/tex]

- Subtract the numerators:

   [tex]\(\frac{196}{64} - \frac{112}{64} = \frac{84}{64}\)[/tex]

4. Simplify the result:

  - Divide both the numerator and denominator by their greatest common factor (GCF), which is 4:

[tex]\(\frac{84}{64} = \frac{21}{16}\)[/tex]

5. Convert back to a mixed number:

  - Divide the numerator by the denominator:

[tex]\(\frac{21}{16} = 1 \frac{5}{16}\)[/tex]

Therefore, the remaining string length after cutting [tex]\(1 \frac{3}{4}\)[/tex] inches is [tex](1 \frac{5}{16}\)[/tex]inches.

If f (x) = – 4x3 + 2x2 – 1, find f (– 1)

Answers

Answer:

[tex]f(-1)=5[/tex]

Step-by-step explanation:

We know that the equation is

[tex]f(x)=-4x^3+2x^2-1[/tex]

We can then plug -1 in for x

[tex]f(-1)=-4(-1)^3+2(-1)^2-1\\\\f(-1)=-4(-1)+2(1)-1\\\\f(-1)=4+2-1\\\\f(-1)=5[/tex]

ANSWER

[tex]f( - 1) = 5[/tex]

EXPLANATION

The given function is

[tex]f(x) = - 4 {x}^{3} + 2 {x}^{2} - 1[/tex]

We substitute x=-1 to obtain:

[tex]f( - 1) = - 4 {( - 1)}^{3} + 2 {( - 1)}^{2} - 1[/tex]

We simplify to obtain;

[tex]f( - 1) = 4 + 2 - 1[/tex]

.

This evaluates to

[tex]f( - 1) = 5[/tex]

what is the solution in this equation -8x+4=36

Answers

Answer:

X=-4

Step-by-step explanation:

Answer:

x = -4

Step-by-step explanation:

-8x+4=36

          -4

-8x     =32

/-8       /-8

  x      = -4

rx+2x=4r+3
Solving for X

Answers

Answer:

  x = (4r +3)/(r +2)

Step-by-step explanation:

Collect x terms, then divide by the coefficient of x.

  x(r +2) = 4r +3

  x = (4r +3)/(r +2)

Write these expressions in exponential form:
1. 10 * 10 * 10 * 10 *10
2. y * y * x * x * x * z * z * z * z *z
3. What is 14 to the zero power?

Answers

1. 10^5

2. z^5*x^3*y^2

3. 1

A mother who is 40 years old has a daughter and a son. The son is twice as old as the daugther. In 15 years the sum of all their ages will be 100 years. How old are the siblings now?

Answers

Answer:

The son's age is 10 and the daughter's age is 5 now

Step-by-step explanation:

Let

x-----> the son's age now

y----> the daughter's age now

we know that

x=2y ----> equation A

(x+15)+(y+15)+(40+15)=100

x+y+85=100

x+y=15 -----> equation B

Substitute equation A in equation B and solve for y

2y+y=15

3y=15

y=5 years

Find the value of x

x=2(5)=10 years

therefore

The son's age is 10.

The daughter's age is 5

please help and thank you. ​

Answers

Answer:

Step-by-step explanation:

This is a negative x^2 quadratic.  I'm not sure if there's anything else you need.

help please

greatest common factor find the GCF of each

must show work

Answers

11) Factors of 55 are 1,5,11,55 Factors of 75 are 1,3,5,15,25,75

The greatest common factor is 5.

12) With algebraic expressions you just simplify and multiplier in the simplification is the greatest common factor.

66yx + 30x^2y --) 6yx( 11 + 5x ) so the greatest common factor is 6yx.

13) 60y + 56x^2 --) 4( 15y + 14x^2 ) so the greatest common factor is 4.

14) 36xy^3 + 24y^2 --) 12y^2( 3xy + 2 ) so the greatest common factor is 12y^2.

15) 18y^2 + 54y^2 --) 18y^2( 1 + 3 ) so the greatest common factor is 18y^2.

16) 80x^3 + 30yx^2 --) 10x^2( 8x + 3y ) so the greatest common factor is 10x^2.

17) 105x + 30yx + 75x --) 15x( 7 + 2y + 5 ) so the greatest common factor is 15x.

18) 140n + 140m^2 + 80m --) 20( 7n + 7m^2 + 4m ) so the greatest common factor is 20.

If you want a further explanation step by step just ask :)

Other Questions
Typically people recompense for services rendered by paying with cash, but occasionally, they may trade services. True False A projectile has an initial horizontal velocity of 15 meters per second and an initial vertical velocity of 25 meters per second. Determine the projectiles horizontal displacement if the total time of flight is 5 seconds Arrange the given steps in the career-planning process in the correct order. PLS HELP ASAP each triangular face of the prism has a base of 3 1/2 centimeters and a height of 4 1/4 centimeters. the length of the prism is 12 centimeters. What is the volume of this triangular prism in cm graph the equation by plotting three points. if all three are correct, the line will appear. -3y=5x-7 Select the correct answer from each drop-down menu.The jurors, having finally reached regarding the verdict, sent for the bailiff.Sara had to take a second job to support her taste in clothing. Name the type of element that has luster, conducts electricity and is malleable Mr. Smith has found a lump under his arm. He goes to his doctor, and the doctor confirms that the lump is cancer. How are cancerous cells different from normal cells?-- A. carcinogens change cancer cells to normal cells B. cancer cells are found in the lymph; normal cells are not C. the growth-regulating genes of cancer cells have mutated D. cancer cells occur in adults but not in children Anyone read How to kill a mockingbird I need a summary about racism on the book ASAP please In right triangle ABC, A=76, a=13, and C is the right angle. Solve the triangle. The Milky Way is often considered to be an intermediately wound, barred spiral, which would be type ________ according to Hubble. Which statement about Cesar Chavez actions in support of farmworkers in California is true?A. He persuaded farmers in other states to increase production to drive California growers out of business.B. He urged striking Grape pickers to destroy crops in the field before they could be harvested.C. He encourage migrants to move back to Mexico where they would receive higher wages.D. He called for a strike and a boycott against grape growers who refused to allow unionized workers. What excerpt is most directly related to which of these Which mood is used to state facts or opinions? How much does a person owes me at the end off 55 months if was supposed to pay me 1000.00 per months at 12 % per month? The dispatcher of courier service receives a message from truck A that reports a position of +5 after a displacement of +2. What was the initial position of Truck A? First solve the problem using a number line and then solve the problem using an equation. A square on a coordinate plane is translated 9 units down and 1 unit to the right. Which function rule describes the translation? _____Succession involves a pioneer species.A. Primary B. TertiaryC. SecondaryD. Quaternary Complete these predictions about the future with your own ideas.1 If everybody lives forever,...2 If computers become more intelligent than humans,...3 If the world becomes too crowded,...4 If humans have computer chips in their brains,...5 If we dont use less energy,... Select the correct answer. A patient asks about the health benefits of naturopathy. What would the healthcare provider report as a benefit? A. uses herbal and botanical supplements from nature instead of synthetic medicines B. strengthens the core of the body to improve overall health C. combines meditation and exercise poses to help relieve stress D. treats the entire person and not just the illness by balancing doshas Steam Workshop Downloader