Answer:
14x-6y=4 and 14x-28y=1
Step-by-step explanation:
we have
7x-3y=4 ----> equation A
2x-4y=1 ----> equation B
Multiply the equation A by 2 both sides
2*(7x-3y)=4*2
14x-6y=8
Multiply the equation B by 7 both sides
7*(2x-4y)=1*7
14x-28y=7
therefore
The system of equations that is not equal to the system of equations above is
14x-6y=4 and 14x-28y=1
Please help will give brainliest
Answer:
4
Step-by-step explanation:
The sum of the measures of all interior angles in triangle is always equal to 180°. So,
∠A+∠B+∠C=180°
∠B=180°-63°-49°=68°
Now use the sine rule:
[tex]\dfrac{c}{\sin \angle C}=\dfrac{b}{\sin \angle B}\\ \\\dfrac{3}{\sin 49^{\circ}}=\dfrac{b}{\sin 68^{\circ}}\\ \\b=\dfrac{3\sin 68^{\circ}}{\sin 49^{\circ}}\approx 3.685\approx 4[/tex]
Choose the correct description of the graph of the compound inequality x − 2 > −4 and 3x less than or equal to 15.
Answer:
A number line with an open circle on −2, a closed circle on 5, and shading in between
Step-by-step explanation:
solve it you get x>-2
and 3x <=15
x<=5
so its close on 5 and open on -2
You jog 6 2/3 miles around a track each day. If you jogged that distance 4 times last week, how many miles did you jog?
Answer:
26 2/3
Step-by-step explanation:
if you walked that distance 4 times last week then you walked 6 2/3 x 4
and that = 26 2/3
PLEASE HELP ME SOLVE THIS
Answer:
y = 90°
Step-by-step explanation:
The left side base angle of the triangle and the angle of 110° form a straight angle and are supplementary, thus
base angle = 180° - 110° = 70°
The right base angle is also 70° , thus the triangle is isosceles
The line segment from the vertex is a perpendicular bisector, hence
y = 90°
20 POINTS
(SSS)
If the lengths of the ______sides of two triangles are______, then the triangles are similar.
(SAS)
If an angle of one triangle is______to an angle of a second triangle and the lengths of the sides including these angles are______, then the triangles are similar.
Answer:
can you make it more specific please?
Step-by-step explanation:
I honestly don't get what you're saying in what subject this is?
Please answer right away!!!
Answer:
22.9m
Step-by-step explanation:
Using Pythagorean theorem, we can get two equations using the angles.
From Point A:
∠A = 20°
AB = 20m
From Point B:
∠B = 29°
BD = x
What we are looking for is the opposite side of each right triangle, each person makes because we have one adjacent side. We also know that both opposite sides will be equal.
So we use this formula for both point of views:
[tex]Tan\theta=\dfrac{Opposite}{adjacent}[/tex]
Where:
Opposite = height of the building
Adjacent = distance from the building
We are looking for the opposite side so we can tweak our formula to get an equation for the height
[tex]height=(Tan\theta)(distance)[/tex]
Using our given, we can solve for the distance of point B to D:
[tex](Tan20)(20+x) = (Tan29)(x)\\\\(0.3640)(20+x) = (0.5543)(x)\\\\\dfrac{(7.28+0.3640x)}{0.5543}=x\\\\13.1337 + 0.6567x = x\\\\13.1337 = x - 0.6567x\\\\13.1337 = 0.3433x\\\\\dfrac{13.1337}{0.3433}=x\\\\38.2572 = x[/tex]
The distance of point B to D is 38.2572 m.
Now that we know the distance of BD we can solve for the height of the building using only the given from point B.
[tex]height=(Tan\theta)(distance)[/tex]
[tex]height=(Tan29)(38.2572m)[/tex]
[tex]height=(0.5543)(38.2572m)[/tex]
[tex]height=21.21m[/tex]
But this is only the height from the line of sight. To get the height of the building from the ground, we just add the height of the viewer, which is 1.7m.
21.21m + 1.7m = 22.91m
The closest answer is: 22.91 m
Adante begins to evaluate the expression 3 1/3 x 5 1/4 using the steps below
Answer:
[tex]\frac{35}{2}[/tex]
Step-by-step explanation:
To solve this problem we need to write the mixed fraction as a fractional number, as follows:
[tex]3 1/3 = 3 + \frac{1}{3} = \frac{9+1}{3} = \frac{10}{3}[/tex]
[tex]5 1/4 = 5 + \frac{1}{4} = \frac{20+1}{4} = \frac{21}{4}[/tex]
Then, evaluating the expression:
[tex]\frac{10}{3}[/tex]×[tex]\frac{21}{4}[/tex] = [tex]\frac{210}{12}[/tex]
→ [tex]\frac{35}{2}[/tex]
Answer:
35 over 2
Step-by-step explanation:
4. How many solutions does the system of equations have?
y= 5x + 7 and y= 5x + 8
A) one
B)two
C)none
D)infinitely many
Answer:
C) none
Step-by-step explanation:
The two lines are parallel (have the same slope (x-coefficient), but different y-intercepts). They have no point in common, hence there is no solution to the system of equations.
___
Another way to think about this: subtract the first equation from the second. You get ...
0 = 1
There are no values of the variables that will make this be true, hence no solutions.
7. Prepaid expenses require what type of adjusting entry?
A. Matched
B. Accumulated
C. Accrued
D. Deferral
Answer:
B
Step-by-step explanation:
Adjusting entries for prepaid expenses are classified as a (D) deferral. They gradually recognize the cost as expense over the period of benefit. This involves decreasing the prepaid asset account and increasing the corresponding expense account.
Prepaid expenses are costs that have been paid in advance for services or goods that will be received in the future. In accounting, prepaid expenses are considered assets because they provide future economic benefits to the company. When adjusting entries for prepaid expenses, the necessary adjusting entry is a ( D) deferral.
This means that the initial payment is recorded in a prepaid asset account, and then as the expense is incurred over time, it is gradually recognized as an expense on the income statement. For example, if a company pays a year's worth of rent in advance, each month, a portion of that prepaid rent would be moved from the prepaid asset account to the rent expense account, reflecting the usage of the space.
An adjusting entry for a deferral decreases the prepaid asset account and increases the expense account. The goal of this type of entry is to apportion the expense to the periods in which the benefits from the prepaid cost are actually realized.
Tx^2+3x-7=0 has two real solutions. What can be deduced from value of T?
Answer:
T > -9/28
Step-by-step explanation:
A quadratic has two real solutions when the discriminant (b² - 4ac) is positive.
b² - 4ac > 0
3² - 4(T)(-7) > 0
9 + 28T > 0
28T > -9
T > -9/28
Which of the following expressions is equivalent to 5?
7 + (-2)
2 + (-7)
7 + 2
-7 + 2
Answer:
7 + (-2) is equivalent to 5
Step-by-step explanation:
Lindsay was going to visit her grandma, shop at the mall, and then return home. The route she took was in the shape of a triangle. The distance between each place she visit was 10 miles. What type of triangle is formed by the route she traveled.
Answer:
Is an equilateral triangle
Step-by-step explanation:
we know that
An equilateral triangle has three equal sides and three equal internal angles measures 60 degrees each
so
In this problem the triangle formed by the route has three equal sides (10 miles)
therefore
Is an equilateral triangle
Help fast please!!!!!!!!
Step-by-step explanation:
The area is
[tex] {x}^{2} - 110x + 2800 \\ = {x}^{2} - 40x - 70x + 2800 \\ = x(x - 40) - 70(x - 40) \\ = (x - 40)(x - 70)[/tex]
Since the width is
[tex]x - 40 \: (feet)[/tex]
Then, the length will be
[tex]x - 70 \: (feet)[/tex]
6th Grade Math! Complete the function table and write the function rule. Please explain, since this is a written answer. Tysm!
Answer:
Its subtract 12.
Step-by-step explanation:
The first question mark is positive 6.
6-12= -6
The second question mark is -22.
Negative 10 minus 12 equals negative 22
Once you understand integers, it will be really easy. I was in 6th grade last year.
If 22x = 23, what is the value of x?
-1/2
-1/4
1/4
no solution
Answer: [tex]x=\frac{23}{22}[/tex]≈[tex]1.04[/tex]
Step-by-step explanation:
You need to solve for the variable "x" to find its value.
To solve for "x" you need to apply the Division property of equality. This states that:
[tex]If\ a=b\ then\ \frac{a}{c}=\frac{b}{c}[/tex]
Then, knowing this, you can divide both sides of the equation by 22. Therefore, you get that the value of "x" is the following:
[tex]\frac{22x}{22}=\frac{23}{22}[/tex]
[tex]x=\frac{23}{22}[/tex]
[tex]x[/tex]≈[tex]1.04[/tex]
The Earth completely rotates on its axis once every 24 hours.
A) How long does it take for it to rotate 310 degrees?
B) How long does it take to rotate 5 radians?
C) The diameter of the Earth is approximately 7920 miles. How far will a point on the equator rotate in 2 hours?
Show all work. Give answers to the nearest hundredth. Include the units in your response.
Answer:
A)
62/3 = 20.67 hours
B)
60 hours
C)
2074.29 miles
Step-by-step explanation:
If we assume the earth is a perfect circle, then in a complete rotation the earth covers 360 degrees or 2π radians.
A)
In 24 hours the earth rotates through an angle of 360 degrees. We are required to determine the duration it takes to rotate through 310 degrees. Let x be the duration it takes the earth to rotate through 310 degrees, then the following proportions hold;
(24/360) = (x/310)
solving for x;
x = (24/360) * 310 = 62/3 = 20.67 hours
B)
In 24 hours the earth rotates through an angle of 2π radians. We are required to determine the duration it takes to rotate through 5π radians. Let x be the duration it takes the earth to rotate through 5π radians, then the following proportions hold;
(24/2π radians) = (x/5π radians)
Solving for x;
x = (24/2π radians)*5π radians = 60 hours
C)
If the diameter of the earth is 7920 miles, then in 24 hours a point on the equator will rotate through a distance equal to the circumference of the Earth. Using the formula for the circumference of a circle we have;
circumference = 2*π*R = π*D
= 7920π miles
Therefore, the speed of the earth is approximately;
(7920π miles)/(24 hours) = 330π miles/hr
The distance covered by a point in 2 hours will thus be;
330π * 2 = 660π miles = 2074.29 miles
Answer:
Part A). In 20 hr 24 minutes earth rotate 310°.
Part B). In 19 hr 6 minutes earth rotate 5 radians
Part C). 2072.4 miles point on equator rotates in 2 hours.
Step-by-step explanation:
Degree that earth rotate in 24 hour = 360°
Number of radian that earth rotate in 24 hour = 2π radian
Part A).
Time taken to rotate 360° = 24 hours
Time taken to rotate 1° = [tex]\frac{24}{360}=\frac{1}{15}\,hours[/tex]
Time taken to rotate 310° = [tex]310\times\frac{1}{15}=20\frac{2}{5}=20\,hr\:24\,minutes[/tex]
Part B).
Time taken to rotate 2π radian = 24 hours
Time taken to rotate 1 radian = [tex]\frac{24}{2\pi}=\frac{12}{\pi}\,hours[/tex]
Time taken to rotate 5 radian = [tex]5\times\frac{12}{\pi}=\frac{60}{\pi}=19.1\.hr=19\,hr\:6\,minutes[/tex]
Part C).
Diameter of Earth = 7920 miles
Radius of earth, r = 3960 miles
Degree of rotation in 1 hours = [tex]\frac{360}{24}=15^{\circ}[/tex]
Degree of rotation in 2 hours , [tex\theta[/tex] = 15 × 2 = 30°
Length of the arc for angle 30° of circle with radius 3960 miles = Distance covered by point in 2 hours.
Length of the arc = [tex]\frac{\theta}{360^{\circ}}\times2\pi r=\frac{30}{360}\times2\times3.14\times3960=2072.4\:miles[/tex]
Therefore, Part A). In 20 hr 24 minutes earth rotate 310°.
Part B). In 19 hr 6 minutes earth rotate 5 radians
Part C). 2072.4 miles point on equator rotates in 2 hours.
Solve the inequality.
2(4 + 2x) < 5x + 5?
X<_____
Answer:
x > 3
Step-by-step explanation:
Given
2(4 + 2x) < 5x + 5 ← distribute left side
8 + 4x < 5x + 5 ( subtract 5 from both sides )
3 + 4x < 5x ( subtract 4x from both sides )
3 < x ⇒ x > 3
helppppp !!!!!!!! thank you
Answer:
The value that best approximates the correlation coefficient is r=0.50
Step-by-step explanation:
we know that
The correlation coefficient r measures the strength and direction of a linear relationship between two variables. Are expressed as values between +1 and -1
Using a Excel tool (Correl function)
see the attached table
the correlation coefficient is r=0.45
so
The value that best approximates the correlation coefficient is r=0.50
The coordinates of A, B, and C in the diagram are A(p,4), B(6,1), and C(9,q). Which equation correctly relates p and q?
Hint: Since is perpendicular to , the slope of × the slope of = -1.
ANSWER
[tex]p + q= 7[/tex]
EXPLANATION
We determine the slope of each line using the slope formula;
[tex]m = \frac{y_2-y_1}{x_2-x_1} [/tex]
The slope of BC is
[tex] = \frac{ q - 1}{9 - 6} [/tex]
[tex] \frac{ q - 1}{3} [/tex]
The slope of AB is
[tex] = \frac{1 - 4}{6 - p} [/tex]
[tex] = - \frac{3}{6 - p} [/tex]
The two lines are perpendicular so the product of their slopes is -1.
[tex] - \frac{3}{6 - p} \times \frac{ q - 1}{3} = - 1[/tex]
This implies that,
[tex]\frac{q - 1}{6 - p} = 1[/tex]
[tex]q - 1=6 - p[/tex]
[tex]q + p = 6 + 1[/tex]
[tex]p + q= 7[/tex]
.
Simplify the expression given below 1/2x^2-4x-2/x
Answer:
We need to simplify the following expressio:
[tex]\frac{1}{2} x^{2}- 4x-\frac{2}{x}[/tex]
Multiply the whole expression by '2x':
[tex]x^{3}-8x^{2}-4[/tex]
The expression can't be more simplified.
Which polynomial expression represents a sum of cubes?
(6 – s)(s2 + 6s + 36)
(6 + s)(s2 – 6s – 36)
(6 + s)(s2 – 6s + 36)
(6 + s)(s2 + 6s + 36)
Answer:
(6 + s)(s² - 6s + 36)Step-by-step explanation:
[tex]\text{The sum of cubes:}\\\\a^3+b^3=(a+b)(a^2-ab+b^2)\\\\\text{Therefore}\\\\\text{for}\ a=6\ \text{and}\ b=s:\\\\6^3+s^3=(6+s)(6^2-6s+s^2)=(6+s)(36-6s+s^2)[/tex]
Answer: (6 + s)(s^2 – 6s + 36)
Step-by-step explanation:
Find the equation of the graph in function notation. Name your function "f" and use x as your variable.
the equation of the graph should be
f(x)= 1/2x -1
Answer:
see explanation
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (0, - 1) and (x₂, y₂ ) = (2, 0) ← 2 points on the line
m = [tex]\frac{0+1}{2-0}[/tex] = [tex]\frac{1}{2}[/tex]
Note the line crosses the y- axis at (0, - 1) ⇒ c = - 1
y = [tex]\frac{1}{2}[/tex] x - 1 ← in slope- intercept form
f(x) = [tex]\frac{1}{2}[/tex] x - 1 ← in functional notation
what is the leading coeffcient of this polynomial
3x^2
Answer:
3
Step-by-step explanation:
The leading coefficient is the number in front of the highest power term.
We only have one term, so the leading coefficient is 3
The deer population in a region is expected to decline 1.1% from 2010-2020. Assuming this continued how many deer would there be in the region in the year 2060 if the 2010 population was 1,578?
1,406
1,510
1,493
1,385
Answer:
Option C. 1,493
Step-by-step explanation:
If the deer population in a region is expected to decline 1.1% from 2010 to 2020. Assuming this continued, we can say that the deer population decreases 1.1% each ten years.
From 2010 to 2060 there are 50 years. If the deer population decreases 1.1% each ten years, then it will decrease 5.5% in 50 years.
If the population in 2010 was 1,578. Then, the population in 2060 is going to be:
Using the rule of three:
If 1578 ----------------> Represents 100%
X <----------------- 5.5%
X = (5.5%x1578)/100% = 86.79 ≈ 87
Then the total population in 2060 is: 1578 - 87 = 1491
None of the answers equal to 1491. That's why I assume the correct answer must be Option C. 1,493. Given that it's the closest answer!
Answer:
The population would be 1,493.
Step-by-step explanation:
Given,
The initial population, P = 1,578, ( In 2010 )
Also, the decline rate per 10 years, r = 1.1 %,
And, the number of the periods of 10 years since, 2010 to 2060, n = 5,
Hence, the population in 2060 would be,
[tex]A=P(1-\frac{r}{100})^n[/tex]
[tex]=1578(1-\frac{1.1}{100})^5[/tex]
[tex]=1493.09849208\approx 1493[/tex]
Option third is correct.
how to graph from linear standered form 2x-6y=12?
Answer:
See graph below for answer
Step-by-step explanation:
Step 1) Change to y-intercept form
6y = 2x - 12
y = 1/3x - 2
Step 2) Graph.
See graph below for answer
determine the next term in the geometric sequence 1024,512,256,128,
Answer:
64
Step-by-step explanation:
We are dividing by 2 each time
1024 /2 = 512
512/2 = 256
256/2 =128
128/2 = 64
A farmer wants to build a new grain silo. The shape of the silo is to be a cylinder with a hemisphere on the top, where the radius of the hemisphere is to be the same length as the radius of the base of the cylinder. The farmer would like the height of the silo’s cylinder portion to be 4 times the diameter of the base of the cylinder. What should the radius of the silo be if the silo is to hold 35,500pie cubic feet of grain?
Answer:
The radius of the silo should be [tex]16\ ft[/tex]
Step-by-step explanation:
we know that
The volume of the grain silo is equal to the volume of the cylinder plus the volume of a hemisphere
[tex]V=\pi r^{2} h+\frac{4}{6}\pi r^{3}[/tex]
we have
[tex]V=35,500\pi\ ft^{3}[/tex]
[tex]h=4D=8r[/tex]
substitute the values and solve for r
[tex]35,500\pi=\pi r^{2} (8r)+\frac{4}{6}\pi r^{3}[/tex]
Simplify
[tex]35,500=r^{2} (8r)+\frac{4}{6}r^{3}[/tex]
[tex]35,500=8r^{3}+\frac{2}{3}r^{3}[/tex]
[tex]35,500=\frac{26}{3}r^{3}[/tex]
[tex]r^{3}=35,500*(3)/26[/tex]
[tex]r=16\ ft[/tex]
To find the radius of the silo, we need to calculate the volume of the cylinder and hemisphere components of the silo, and then set their sum equal to the desired volume of grain. By substituting the given relationship between the height and radius, we can express the volumes in terms of the radius, and solve for the value of r that satisfies the equation.
Explanation:To find the radius of the silo, we can start by calculating the volume of the cylinder. The formula for the volume of a cylinder is V = πr²h, where r is the radius of the base and h is the height. In this case, we are given that the height of the cylinder is 4 times the diameter of the base, so we can write h = 4r. The volume of the cylinder portion would then be V_cylinder = πr²(4r) = 4πr³.
The volume of the hemisphere on top can be calculated using the formula for the volume of a sphere, which is V = (4/3)πr³. Since the radius of the hemisphere is the same as the radius of the base of the cylinder, this volume would be V_hemisphere = (4/3)πr³.
The total volume of the silo is the sum of the cylinder volume and the hemisphere volume. So we have the equation V_total = V_cylinder + V_hemisphere = 4πr³ + (4/3)πr³ = (16/3)πr³. We know that the silo is to hold 35,500π cubic feet of grain, so we can set up the equation (16/3)πr³ = 35,500π and solve for r. Dividing both sides by (16/3)π, we get r³ = 35,500/((16/3)π), and taking the cube root of both sides, we find r = ∛(35,500/((16/3)π)). Evaluating this expression, we find that r ≈ 5.02 feet.
Learn more about volume calculation here:https://brainly.com/question/33318354
#SPJ3
Which of the following is a valid comparison between the possible minimum and maximum values of the function y = -x2 + 4x - 8 and the graph below?
The maximum value of the equation is 1 less than the maximum value of the graph.
The minimum value of the equation is 1 less than the minimum value of the graph.
The minimum value of the equation is 1 greater than the minimum value of the graph.
The maximum value of the equation is 1 greater than the maximum value of the graph.
Answer:
The maximum value of the equation is 1 less than the maximum value of the graph
Step-by-step explanation:
We have the equation [tex]y=-x^2+4x-8[/tex].
We can know that this graph will have a maximum value as this is a negative parabola.
In order to find the maximum value, we can use the equation [tex]x=\frac{-b}{2a}[/tex]
In our given equation:
a=-1
b=4
c=-8
Now we can plug in these values to the equation
[tex]x=\frac{-4}{-2} \\\\x=2[/tex]
Now we can plug the x value where the maximum occurs to find the max value of the equation
[tex]y=-(2)^2+4(2)-8\\\\y=-4+8-8\\\\y=-4[/tex]
This means that the maximum of this equation is -4.
The maximum of the graph is shown to be -3
This means that the maximum value of the equation is 1 less than the maximum value of the graph
Answer:
The maximum value of the equation is 1 less than the maximum value of the graph
Step-by-step explanation:
The reflection of a figure is called a(n)-
image
pre-image
Answer: its called an image
Step-by-step explanation:
This is because it the result of the reflection
The reflection of a figure is called an image.
A reflection is a transformation representing a flip of a figure.
An image formed by mirrors is due to the reflection of light originating from an object.
Image may be real or virtual, upright or inverted, and diminished or enlarged.
When we place an object in front of the mirror, we see the same object in the mirror. This image that appears to be behind the mirror is called the image.
Image is a visual or other representation of a real object; a graphic; a picture while reflection is the act of reflecting or the state of being reflected.
Whereas, The pre-image is the original appearance of a figure in a transformation operation.
What is the meaning of reflection and examples?The definition of a reflection is a thought or writing about something, particular in the past, or what one sees when looking into a mirror or body of water. An example of reflection is an article written by an author discussing how he feels he has grown in the past year in his writing style.
Why do you mean by reflection?When a ray of light approaches a smooth polished surface and the light ray bounces back, it is called the reflection of light. The incident light ray that land on the surface is reflected off the surface. The ray that bounces back is called the reflected ray.
Hence, the reflection of a figure is called an image.
Learn more about reflection, refer to:
https://brainly.com/question/2333104
#SPJ2
Find the percent change when the original price was $76 and the new price is $60. Please show your work.
from 76 down to 60 is a 16 difference.
if we take 76 to be the 100%, what is 16 off of it in percentage?
[tex]\bf \begin{array}{ccll} amount&\%\\ \cline{1-2} 76&100\\ 16&x \end{array}\implies \cfrac{76}{16}=\cfrac{100}{x}\implies \cfrac{19}{4}=\cfrac{100}{x} \\\\\\ 19x=400\implies x=\cfrac{400}{19}\implies x\approx 21.05[/tex]
Answer
The price reduced by 21.05%
Explanation
•To determine the price decrease in dollars, subtract:
76 - 60 = 16
•The price decreased by 16 dollars as shown above.
•16 is what percent of 76?
So, to find that, set up an equation:
76x = 16
•Divide both sides by 76.
[tex]\frac{76x}{76} = x[/tex]
[tex]\frac{16}{76} = .21 or 21%[/tex]
x = .2105 or 21.05%