Previously , you wrote a program named Hurricane that classified hurricanes into five categories using the Saffir-Simpson Hurricane Scale. Now, create a modified version named Hurricane Modularized that passes a user’s input wind speed to a method that returns the hurricane category.

Answers

Answer 1

Answer:

Answer  of the Java class explained below with appropriate comments

Explanation:

using System;

class MainClass {

 public static void Main (string[] args) {

//entering wind speed of the hurricane

   Console.WriteLine ("Enter wind speed in mph: ");

   int windSpeed = Convert.ToInt32(Console.ReadLine());

//checking for the category with the credited wind speed

   int category = GetCategory(windSpeed);

   Console.WriteLine ("Category: " + category);

 }

 public static int GetCategory(int wind) {

     //function for classifying the wind speeds

     if(wind >= 157) {

         

     return 5;

     }

     if(wind >= 130) {

         return 4;

     }

     if(wind >= 111) {

         return 3;

     }

     if(wind >= 96) {

         return 2 ;

     }

     return 1;

 }

}


Related Questions

1. A group of 45 tests on a given type of concrete had a mean strength of 4780 psi and a standard deviation of 525 psi. Does this concrete satisfy the requirements of ACI code for 4000 psi concrete

Answers

Answer:

Yes, because both design compressive stress is greater than 4000 psi

Explanation:

To design a concrete that satisfy the requirements of ACI code for 4000 psi concrete

Step 1: design the compressive stress, using the two equations below

[tex]f_{c} =f_{cr}-1.34*s[/tex] -------equation 1

where;

[tex]f_{c}[/tex] is the design compressive stress

[tex]f_{cr}[/tex] is the critical stress = 4780 psi mean strength

s is the standard deviation = 525 psi

[tex]f_{c} = 4780 -1.34*525[/tex] = 4076.5 psi

Step 2: design the compressive stress, using the second design equation

[tex]f_{c} =f_{cr}-2.33*s + 500[/tex] -------equation 2

[tex]f_{c} =4780-2.33*525 + 500[/tex] = 4056.75 psi

Therefore, since both compressive stress is greater than 4000 psi, the concrete satisfies the requirements of ACI code for 4000 psi concrete

Assume that the number of seeds a plant produces is proportional to its aboveground biomass. Find an equation that relates number of seeds and above ground biomass if a plant that weighs 225 g has 26 seeds. Use the variables s for number of seeds and w for weight in grams.

Answers

Answer:

s= 0.1156 * w or

s= 0.115*(q+p) in terms of Top Biomass and Root Biomass

Explanation:

Since s (number of seeds) is proportional to biomass (w), and above ground biomass also increases with total plant biomass.

s α w

s= 26

w= 225

k= constant

Thus s = k * w

s/w= k

26/225= k

0.1156= k

The equation showing the relationship between seeds and plant biomass is:

s= 0.1156 * w

Assume q= Top Biomass, and p= Root Biomass

w= q+p

Our equation now becomes

s= 0.115*(q+p)

A 75-hp (shaft output) motor that has an efficiency of 91.0 percent is worn out and is replaced by a high-efficiency 75-hp motor that has an efficiency of 96.3 percent. Determine the reduction in the heat gain of the room due to higher efficiency under full-load conditions.

Answers

Answer:

4.536hp

Explanation:

The decrease in the heat gain of the room is determined from difference in electrical inputs:

[tex]Q = W_{shaft} (\frac{1}{n_{1} } - \frac{1}{n_{2} })\\Q = (75hp)*(\frac{1}{0.91 } - \frac{1}{0.963 })\\\\Q = 4.536 hp[/tex]

DMZ stands for "data-mining zombie," and it is a type of zombie that uses targeted algorithms to steal important, private data from computers connected to the botnet.
True/False

Answers

Answer:

False

Explanation:

DMZ stand for DeMilitarized Zone(perimeter network).

It is a sub-network(physical or logical) that contains external facing services to untrusted network. Not only that it contains it also exposes this kind of services.

Adding another layer of security is the main purpose of DMZ

DMZ is positioned in between the Internet and private network

Consider the base plate of an 800-W household iron with a thickness of L 5 0.6 cm, base area of A 5 160 cm2, and thermal conductivity of k 5 60 W/m·K. The inner surface of the base plate is subjected to uniform heat flux generated by the resistance heaters inside. When steady operating conditions are reached, the outer surface temperature of the plate is measured to be 112°C. Disregarding any heat loss through the upper part of the iron, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the plate, (b) obtain a relation for the variation of temperature in the base plate by solving the differential equation, and (c) evaluate the inner surface temperature. Answer: (c) 117°C

Answers

Answer:

a. [tex]\frac{-kdT(0)}{dx} =q_{0}[/tex]=5000W/m^2

b.833.3(0.006-x)+112

c. 117 deg C

Explanation:

Consider the base plate of an 800-W household iron with a thickness of L 5 0.6 cm, base area of A 5 160 cm2, and thermal conductivity of k 5 60 W/m·K. The inner surface of the base plate is subjected to uniform heat flux generated by the resistance heaters inside. When steady operating conditions are reached, the outer surface temperature of the plate is measured to be 112°C. Disregarding any heat loss through the upper part of the iron,

Assumption

Heat conduction is steady state and unidimensional  2. thermal conductivity is constant. Heat supplied is not in the plate

4. we disregard heat loss

Heat flux=heat/area

[tex]\alpha[/tex]/A=800W/160*10^-4

with direction to the surface been in the x direction,

the mathematical expression will be

[tex]\frac{d^2T}{dx^2}[/tex]=0..............1

and [tex]\frac{-kdT(0)}{dx} =q_{0}[/tex]=5000W/m^2

from fourier law, for conductivity

T(L)=T2=112C

b. integrating equation 1 twice we have\dT/dx=c1

T(x)=C1x+C2

C1 and C2 are arbitrary constant

at x=0 the boundary conditions become

-kC1=qo

C1=-(qo/k)

at x=L          

=T(L)=C1L+C2=T2

C2=T2-cL1

C2=T2+qoL/k

Juxtaposing C1 and C2 into the general equation , we have

T(x)=-qo/k+T2+qoL/k=qo(L-k)/k+T2

50000*(0.006-x)/60+112

833.3(0.006-x)+112

c. inner surface plate temperature is

T(0)=833.33(0.006-0)+112 ( using the derivation in answer b)

117 deg C

Two capacitors with capacitances of 16 nF and 24 nF, respectively, are connected in parallel. This combination is then connected to a battery. If the charge on the 16 nF capacitor is 56 nC, what is the charge on the 24 nF capacitor

Answers

Answer:

charge on the 24 nF capacitor is 84 nC

Explanation:

given data

capacitance Q1 = 16 nF

capacitance Q2 = 24 nF

charge on the 16 nF capacitor C1 = 56 nC

solution

we get here capacitor in parallel have same voltage

V1 = V2   ...............1

here voltage V1 = [tex]\frac{Q1}{C1}[/tex]

[tex]\frac{Q1}{C1}[/tex] = [tex]\frac{Q2}{C2}[/tex]    .....................2

put here value we get

[tex]\frac{56}{16} = \frac{Q2}{24}[/tex]

Q = 84 nC

so charge on the 24 nF capacitor is 84 nC

Final answer:

The charge on the 24 nF capacitor, when paired in parallel with a 16 nF capacitor connected to the same battery, is determined to be 84 nC.

Explanation:

When two capacitors are connected in parallel and then to a battery, they both will have the same voltage across them. Given that the charge (Q) on a capacitor is equal to the product of its capacitance (C) and the voltage (V), and assuming the 16 nF capacitor has a charge of 56 nC, the charge on the 24 nF capacitor can be determined using the formula Q = CV.

First, find the voltage using the 16 nF capacitor:

V = Q/C = 56 nC / 16 nFV = 3.5 V

Since the capacitors are in parallel, the voltage across the 24 nF capacitor is also 3.5 V. Therefore, the charge on the 24 nF capacitor is:

Q = CV = 24 nF × 3.5 VQ= 84 nC

The charge on the 24 nF capacitor is 84 nC.

A batch chemical reactor achieves a reduction in concentration of compound A from 90 mg/l to 10 mg/L in one hour. if the reaction is known to follow zero order kinetics, determine the value of the rate constant in (mg/L.hr) unit.

Answers

Answer:

value of the rate constant is 80 mg/L-hr

Explanation:

given data

concentration of compound Cao = 90 mg/l

Ca = 10 mg/L

time = 1 hour

solution

we use here  zero order reaction rate flow

-rA = K Ca

[tex]\frac{-dCa}{dt}[/tex] = K

-d Ca = k dt

now we will integrate it on the both side by Cao to ca we get

[tex]- \int\limits^{Ca}_{Cao} {dCa} \, = K \int\limits^4_0 {dt} \,[/tex]  

solve it we get

cao - Ca = K t

put here value  and we get K

90 - 10 = K 1

K = 80 mg/L-hr

so value of the rate constant is 80 mg/L-hr

A signalized intersection approach has an upgrade of 4%. The total width of the cross street at this intersection is 60 feet. The average vehicle length of approaching traffic is 16 feet. The speed of approaching traffic is 40 mi/h. Determine the sum of the minimum necessary change and clearance intervals.

Answers

Answer:

change interval is 3.93 sec

clearance interval is 1.477 sec

Explanation:

Given data:

upgrade of intersection 4%

street total width at intersection is 60 ft

vehicle length of approaching traffic = 16 ft

speed of approaching traffic =40 mi/hr

85th percentile speed is calculated as

S_{85} = S +5

S_{ 85} = 40 + 5  = 45 mi/h

15th Percentile speed

[tex]S_{15} =S-5[/tex]

          = 40 - 5 = 35 mi/hr

change in interval is calculated as

[tex]y = t + \frac{1.47 S_{85}}{2a +(64.4\times 0.01 G}[/tex]

t is reaction time is 1.0,

deceleration rate is given as 10 ft/s^2

[tex]y = 1.0 +\frac{1.47\times 45}{2a +(64.4\times 0.01\times 4}[/tex]

y = 3.93 s

clearance interval is calculated as

[tex]a_r = \frac{W+ L}{1.47\times S_{15}}[/tex]

[tex]a_r = \frac{60+16}{1.47\times 35} = 1.477 s[/tex]

In a Major scale the half-steps always fall between SUPERTONIC and SUBDOMINANT, and between LEADING TONE and TONIC.
True/False

Answers

Answer:

False

Explanation: Half-steps are two keys that are adjacent. A major scale have half step between 3 and 4,7 and 8. The fourth note- subdominant, and the second note- SUPERTONIC. 7th note-leading tonic, and first note-tonic.

Final answer:

The student's statement is incorrect. In a Major scale, half-steps always fall between the MEDIAN and the SUBDOMINANT, and the LEADING TONE and TONIC

Explanation:

The statement in your question - 'In a Major scale the half-steps always fall between SUPERTONIC and SUBDOMINANT, and between LEADING TONE and TONIC' is False. In a Major scale, the half steps always occur between the 3rd and 4th steps (i.e., MEDIAN and SUBDOMINANT) and between the 7th and 8th steps (i.e., LEADING TONE and TONIC). The SUPERTONIC is the second step of the scale, not directly involved in the half steps of a Major scale. Therefore, the correct sequence of half steps in a Major scale falls between the MEDIAN and the SUBDOMINANT, and the LEADING TONE and TONIC.

Learn more about Major scale here:

https://brainly.com/question/35147965

#SPJ3

For a short time a rocket travels up and to the left at a constant speed of v = 650 m/s along the parabolic path y=600−35x2m, where x isin m. The origin of polar coordinate system is the same as the origin of the rectangular coordinate system xy.

Part A

Determine the radial component of velocity of the rocket at the instant when its transverse coordinate θ = 60∘, where θ is measured counterclockwise from the x axis.

Express your answer to three significant figures and include the appropriate units.

Part B

Determine the transverse component of velocity of the rocket at the instant when its transverse coordinate θ = 60∘, where θ is measured counterclockwise from the x axis.

Express your answer to three significant figures and include the appropriate units.

Answers

Answer:

Detailed working is shown

Explanation:

The attached file shows a detailed step by step calculation..

Final answer:

The radial and transverse components of the rocket's velocity at an angle of 60 degrees from the x-axis are 325 m/s and 563 m/s, respectively.

Explanation:

Using Physics principles, we know that when a rocket moves along a parabolic path, its velocity can be decomposed into two components: the radial component (the component of velocity directly in line with the radial direction) and the transverse component (the component of velocity perpendicular to the radial direction).

Given that the absolute speed |v| of the rocket is 650 m/s and the angle θ that the velocity makes with respect to x-axis (measured counterclockwise) is 60°, we can use the trigonometric definitions of sine and cosine to compute the radial and transverse components respectively.

Part A:  The radial component of velocity (vr) at θ = 60° can be computed using the formula vr = v * cosθ. So, vr = 650 m/s * cos60° = 325 m/s.

Part B: The transverse component of velocity (vt) at θ = 60° can be computed using the formula vt = v * sinθ. So, vt = 650 m/s * sin60° = 563 m/s.

Learn more about Velocity Components here:

https://brainly.com/question/33537450

#SPJ3

Consider a pond that initially contains 10 million gallons of fresh water. Water containing a chemical pollutant flows into the pond at the rate of 5 million gallons per year (gal/yr), and the mixture in the pond flows out at the same rate. The concentration c=c(t) of the chemical in the incoming water varies periodically with time to the expression c(t) = 2 + sin(2t) grams per gallon (g/gal).

Construct a mathematical model of this flow process and determine the amount of chemical in the pond at any time t. Then, plot the solution using Maple and describe in words the effect of the variation in the incoming chemical.

Answers

Answer:

kindly find attachment for detailed answer

Explanation

Consider a pond that initially contains 10 million gallons of fresh water. Water containing a chemical pollutant flows into the pond at the rate of 5 million gallons per year (gal/yr), and the mixture in the pond flows out at the same rate. The concentration c=c(t) of the chemical in the incoming water varies periodically with time to the expression c(t) = 2 + sin(2t) grams per gallon (g/gal).

Construct a mathematical model of this flow process and determine the amount of chemical in the pond at any time t. Then, plot the solution using Maple and describe in words the effect of the variation in the incoming chemical.

Wheel diameter = 150 mm, and infeed = 0.06 mm in a surface grinding operation. Wheel speed = 1600 m/min, work speed = 0.30 m/s, and crossfeed = 5 mm. The number of active grits per area of wheel surface = 50 grits/cm2. Determine (a) average length per chip, (b) metal removal rate, and (c) number of chips formed per unit time for the portion of the operation when the wheel is engaged in the work.

Answers

Answer: a) 3mm

b) 5400mm^3/min

c) 4000000chips/min

Explanation:

Wheel diameter(D) =150mm

Infeed(W)=0.06mm

Wheel speed(V)=1600m/min

Work speed(Vw)=0.3m/s

Cross feed(d)=5mm

Number of active grits per area of wheel surface =50grits/cm^2

Average length per chip(Lc)=?

Metal removal rate(Rmr)=?

Number of chips formed per unit time(nc)=?

a) Lc=(Dd)^0.5

Lc=(150*0.06)^0.5

Lc=3mm

b) Rmr=VwWd

Rmr=(0.3m/s)*(10^3mm/m)*(5mm)*(0.06mm)

Rmr=5400mm^3/min

c) nc=VWc

nc=(1600m/min)(10^3)(5mm)(50grits/cm^2)(10^-2)

nc=4,000,000chips/min.

Use the laws of propositional logic to prove that each statement is a tautology. (p n q) rightarrow (p V r) p rightarrow (r rightarrow p) (8 points each for a total of 16, zyBook section 1.5, exercise 1.5.3(a, b))

Answers

Answer:

See explanation below.

Explanation:

If the statement is a tautology is true for all the possible combinations

Part a

[tex] (p \land q) \Rightarrow (p \lor r)[/tex] lets call this condition (1)

[tex](p \land q) [/tex] condition (2) and [tex](p \lor r)[/tex] condition (3)

We can create a table like this one:

p       q     r      (2)       (3)     (1)  

T       T     T      T        T       T

T       T     F      T        T       T        

T       F     T      F        T       T

T       F     F      F        T       T

F       T     T      F        T       T

F       T     F      F        F       T

F       F     T      F        T       T

F       F     F      F        F       T

So as we can see we have a tautology.

Part b

[tex] p \Rightarrow (r \Rightarrow p)[/tex] lt's call this condition 1

And [tex] (r \Rightarrow p)[/tex] condition 2

We can create the following table:

p     r       (2)     (1)

T     T       T       T

T     F       T       T

F     T       F       T

F     F       T       T

So is also a tautology.

Create a C language program that can be used to construct any arbitrary Deterministic Finite Automaton corresponding to the FDA definition above. a. Create structs for the: automaton, a state, and a transition. For example, the automaton should have a "states" field, which captures its set of states as a linked list.

Answers

Answer:

see the explanation

Explanation:

/* C Program to construct Deterministic Finite Automaton */

#include <stdio.h>

#include <DFA.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <stdbool.h>

struct node{

struct node *initialStateID0;

struct node *presentStateID1;

};

printf("Please enter the total number of states:");

scanf("%d",&count);

//To create the Deterministic Finite Automata

DFA* create_dfa DFA(){

  q=(struct node *)malloc(sizeof(struct node)*count);

  dfa->initialStateID = -1;

  dfa->presentStateID = -1;

  dfa->totalNumOfStates = 0;

  return dfa;

}

//To make the next transition

void NextTransition(DFA* dfa, char c)

{

  int tID;

  for (tID = 0; tID < pPresentState->numOfTransitions; tID++){

       if (pPresentState->transitions[tID].condition(c))

      {

          dfa->presentStateID = pPresentState->transitions[tID].toStateID;

          return;

      }

  }

  dfa->presentStateID = pPresentState->defaultToStateID;

}

//To Add the state to DFA by using number of states

void State_add (DFA* pDFA, DFAState* newState)

{  

  newState->ID = pDFA->numOfStates;

  pDFA->states[pDFA->numOfStates] = newState;

  pDFA->numOfStates++;

}

void transition_Add (DFA* dfa, int fromStateID, int(*condition)(char), int toStateID)

{

  DFAState* state = dfa->states[fromStateID];

  state->transitions[state->numOfTransitions].toStateID = toStateID;

  state->numOfTransitions++;

}

void reset(DFA* dfa)

{

  dfa->presentStateID = dfa->initialStateID;

}

Many car companies are performing research on collision avoidance systems. A small prototype applies engine braking that decelerates the vehicle according to the relationship a = − k √ t , where a and t are expressed in m/s² and seconds, respectively.
The vehicle is traveling at 20 m/s when its radar sensors detect a stationary obstacle. Knowing that it takes the prototype vehicle 4 seconds to stop, determine; (a) expressions for its velocity and position as a function of time, (b) how far the vehicle traveled before it stopped.

Answers

Answer:

[tex]v(t)=-\frac{5}{2}\sqrt{t^3}+20\\s(t)=-\sqrt{t^5}+20t[/tex]

[tex]s(t=4)=48\text{ m}[/tex]

Explanation:

In this case acceleration is defined as:

[tex]a(t)=-k\sqrt{t}[/tex] ,

where k is a constant to be found.

To find the expressions for velocity and position as a function of time you must integrate the expression above for acceleration two times.

Initial conditions and boundary conditions are defined with the rest of the data as:

[tex]v(t=0)=20\text{ m/s}\\v(t=4)=0\text{ m/s}\\s(t=0)=0\text{ m}[/tex]

First integration is equal to:

[tex]a'(t)=v(t)=-k\int\sqrt{t}dt=-\frac{2}{3}k\sqrt{t^3}+C_1[/tex]

The boundary condition and initial condition can be used to calculate [tex]k[/tex] and [tex]C_1[/tex]:

[tex]C_1=20\\k=\frac{15}{4}[/tex]

With this expression for velocity is defined as:

[tex]v(t)=-\frac{5}{2}\sqrt{t^3}+20[/tex]

The same can be done to get to expression for position:

[tex]s(t)=-\sqrt{t^5}+20[/tex]

To get the total distance traveled you can integrate the velocity expression from time=0 sec to time=4 sec:

[tex]s_{tot}=\int_0^4(-\frac{5}{2}\sqrt{t^3}+20)dt=48\text{ m}[/tex]

The real power delivered by a source to two impedances, ????1=4+????5⁡Ω and ????2=10⁡Ω connected in parallel, is 1000 W. Determine (a) the real power absorbed by each of the impedances and (b) the source current.

Answers

Answer:

The question is incomplete, below is the complete question

"The real power delivered by a source to two impedance, Z1=4+j5⁡Ω and Z2=10⁡Ω connected in parallel, is 1000 W. Determine (a) the real power absorbed by each of the impedances and (b) the source current."

answer:

a. 615W, 384.4W

b. 17.4A

Explanation:

To determine the real power absorbed by the impedance, we need to find first the equivalent admittance for each impedance.

recall that the symbol for admittance is Y and express as

[tex]Y=\frac{1}{Z}[/tex]

Hence for each we have,  

[tex]Y_{1} =1/Zx_{1}\\Y_{1} =\frac{1}{4+j5}\\converting to polar \\ Y_{1} =\frac{1}{6.4\leq 51.3}\\ Y_{1} =(0.16 \leq -51.3)S[/tex]

for the second impedance we have

[tex]Y_{2}=\frac{1}{10}\\Y_{2}=0.1S[/tex]

we also determine the voltage cross the impedance,

P=V^2(Y1 +Y2)

[tex]V=\sqrt{\frac{P}{Y_{1}+Y_{2}}}\\[/tex]

[tex]V=\sqrt{\frac{1000}{0.16+0.1}}\\ V=62v[/tex]

The real power in the impedance is calculated as

[tex]P_{1}=v^{2}G_{1}\\P_{1}=62*62*0.16\\ P_{1}=615W[/tex]

for the second impedance

[tex]P_{2}=v^{2}*G_{2}\\ P_{2}=62*62*0.1\\384.4w[/tex]

b. We determine the equivalent admittance

[tex]Y_{total}=Y_{1}+Y_{2}\\Y_{total}=(0.16\leq -51.3 )+0.1\\Y_{total}=(0.16-j1.0)+0.1\\Y_{total}=0.26-J1.0\\[/tex]

We convert the equivalent admittance back into the polar form

[tex]Y_{total}=0.28\leq -19.65\\[/tex]

the source current flows is

[tex]I_{s}=VY_{total}\\I_{s}=62*0.28\\I_{s}=17.4A[/tex]

Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie. What else did he wear?

Answers

Answer:

He wore his black suit, another color of shirt (not purple) and shoes

Explanation:

Holmes owns two suits: one black and one tweed.

Whenever he wears his tweed suit and a purple shirt, he chooses not to wear a tie and whenever he wears sandals, he always wears a purple shirt.

So, if he wore a bow tie yesterday, it means he wore his black suit, another color of shirt (not purple) and shoes because the shirt color is not purple

a) A total charge Q = 23.6 μC is deposited uniformly on the surface of a hollow sphere with radius R = 26.1 cm. Use ε0 = 8.85419 X 10−12 C2/Nm2. What is the magnitude of the electric field at the center of the sphere? b) What is the magnitude of the electric field at a distance R/2 from the center of the sphere? c) What is the magnitude of the electric field at a distance 52.2 cm from the center of the sphere?

Answers

Answer:

(a) E = 0 N/C

(b) E = 0 N/C

(c) E = 7.78 x10^5 N/C

Explanation:

We are given a hollow sphere with following parameters:

Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C

R = radius of sphere = 26.1 cm = 0.261 m

Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²

The formula for the electric field intensity is:

E = (1/4πεo)(Q/r²)

where, r = the distance from center of sphere where the intensity is to be found.

(a)

At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.

E = 0 N/C

(b)

Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).

E = 0 N/C

(c)

Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:

E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]

E = 7.78 x10^5 N/C

An electric current of 237.0 mA flows for 8.0 minutes. Calculate the amount of electric charge transported. Be sure your answer has the correct unit symbol and the correct number of significant digits x10

Answers

Answer:

amount of electric charge transported =  1.13 × [tex]10^{-2}[/tex] C

Explanation:

given data

electric current = 237.0 mA = 0.237 A

time = 8 min = 8 × 60 sec = 480 sec

solution

we get here amount of electric charge transported that is express as

amount of electric charge transported = electric current × time  ...........1

put here value and we get

amount of electric charge transported = 0.237  × 480

amount of electric charge transported = 113.76 C

amount of electric charge transported =  1.13 × [tex]10^{-2}[/tex] C

BJP4 Self-Check 7.16a: countStrings Language/Type: Java arrays Strings Author:Marty Stepp (on 2016/09/08) Write a method countStrings that takes an array of Strings and a target String and returns the number of occurences target appears in the array.

Answers

Answer

//countStrings Method

public class countStrings {

public int Arraycount(String[] arrray, String target) {

int count = 0;

for(String elem : arrray) {

if (elem.equals(target)) {

count++;

}

}

return count;

}

// Body

public static void main(String args [] ) {

countStrings ccount = new countStrings();

int kount = ccount.Arraycount(new String[]{"Sick", "Health", "Hospital","Strength","Health"}, " Health"

System.out.println(kount);

}

}

The Program above is written in Java programming language.

It's Divided into two parts

The first is the method countStrings

While the second part of the program is the main method for the program execution

Derive the following conversion factors:

(a) Convert a volume flow rate in cubic inches per minute to cubic millimeters per minute.

(b) Convert a volume flow rate in cubic meters per second to gallons per minute (gpm).

(c) Convert a volume flow rate in liters per minute to gpm.

(d) Convert a volume flow rate of air in standard cubic feet per minute (SCFM) to cubic meters per hour.

A standard cubic foot of gas occupies one cubic foot at standard temperature and pressure (T = 15∘ C and p= 101:3 kPa absolute).

Answers

Answer:

A. 0.0283 mm3/min

B. 15850.2 gal/min

C. 0.2642 gal/min

D. 1.7 m3/hour

Explanation:

A.

[(1 in)3/min *(25.4mm)3/(1 in)]

= 0.02832 mm3/min

B.

[(1m)3/sec*(264.173gal)/(1m)3]*(60secs)/1min

= 15850.2 gal/min

C.

[(Liter/min)*(0.264172gal/liter)]

=0.2642 gal/min

D.

[(1ft)3/min*(0.3048m)3/(1ft)3*(60mins/1hour)]

=1.7 m3/hour

Below is an attachment that should help.

Consider an aircraft traveling at high speed. At a point on its wing, the local shear stress is 312 N/m2, and the local conductive heat transfer to the wing is 450 kW/m2. Calculate the air velocity and temperature gradients normal to the surface assuming that the surface has a temperature of 330 K.

Answers

Answer:

The air velocity is 1442.3m/s

The temperature gradient is 0.00311K/m

Explanation:

Rate of heat transfer = local conductive heat transfer × area

Rate of heat transfer = force × distance/time (distance/time = velocity)

Therefore, rate of heat transfer = force × velocity

Force (F) × velocity (v) = local conductive heat transfer coefficient (k) × Area (A)

F/A × v = k

Shear stress = F/A = 312N/m^2

k = 450kW/m^2 = 450×1000W/m^2 = 450000W/m^2

312 × v = 450000

v = 450000/312 = 1442.3m/s

Air velocity (v) = 1442.3m/s

Temperature gradient = Temperature (T)/distance (s)

From equations of motion

v^2 = u^2 + 2gs

u = 0m/s, v = 1442.3m/s, g = 9.8m/s^2

1442.3^2 = 2×9.8×s

s = 2080229.29/19.6 = 106134.15m

Temperature gradient = 330K/106134.15m = 0.00311K/m

Answer:

The solution is shown in the images attached with the answer.

Explanation:

Using Pascal’s Law and a hydraulic jack, you want to lift a 4,000 lbm rock. The large cylinder has a diameter of 6 inches.
a. What would the diameter of the small cylinder need to be if the amount of forceyou could apply was limited to your weight (120 lbf) ? (neglect the leveragegained by using a handle)

Answers

Answer:

a diameter of D₂ = 0.183 inches would be required

Explanation:

appyling pascal's law

P applied to the hydraulic jack = P required to lift the rock

F₁*A₁ = F₂*A₂

since A₁= π*D₁²/4 ,  A₂= π*D₂²/4

F₁*π*D₁²/4 = F₂* π*D₂²/4

F₁*D₁²=F₂*D₂²

D₂ = D₁ *√(F₁/F₂)

replacing values

D₂ = D₁ *√(F₁/F₂) =  6 in * √(120 lbf/(4000 lbm * 32.174 (lbf/lbm)) = 0.183 inches

Consider a cylinder of height h, diameter d, and wall thickness t pressurized to an internal pressure P_0 (gauge pressure, relative to the external atmospheric pressure). The cylinder consists of material with Young's modulus E, Poisson's ratio v, and density rho. Derive expressions for the axial and hoop strains of the cylinder wall in terms of the can dimensions, properties, and internal pressure. You may assume plane stress conditions.

Continuing on Problem 1, assume a strain gage is bonded to the cylinder wall surface in the direction of the axial strain. The strain gage has nominal resistance R_0 and a Gage Factor GF. It is connected in a Wheatstone bridge configuration where all resistors have the same nominal resistance: the bridge has an input voltage V_in. (The strain gage is bonded and the Wheatstone bridge balanced with the vessel already pressurized.) Develop an expression for the voltage change delta V across the bridge if the cylinder pressure changes by delta P.

Repeat Problem 2, but now assuming the strain gage is bonded to the cylinder wall surface in the direction of the hoop strain. Does the voltage change more when the strain gage is oriented in the axial or hoop direction?

Continuing on Problem 3 (strain gage in the hoop direction), calculate the voltage change delta V across the Wheatstone bridge when the cylinder pressure increases by 1 atm. Assume the vessel is made of aluminum 3004 with height h = 10.5 cm, diameter d = 5.5 cm, and thickness t = 50 mu m. The Gage Factor is GF = 2 and the Wheatstone bridge has V_in = 6 V. The strain gage has nominal resistance R_0 = R_4 = 120 ohm.

Answers

Explanation:

Note: For equations refer the attached document!

The net upward pressure force per unit height p*D must be balanced by the downward tensile force per unit height 2T, a force that can also be expressed as a stress, σhoop, times area 2t. Equating and solving for σh gives:

 Eq 1

Similarly, the axial stress σaxial can be calculated by dividing the total force on the end of the can, pA=pπ(D/2)2 by the cross sectional area of the wall, πDt, giving:

Eq 2

For a flat sheet in biaxial tension, the strain in a given direction such as the ‘hoop’ tangential direction is given by the following constitutive relation - with Young’s modulus E and Poisson’s ratio ν:

 Eq 3

 

Finally, solving for unknown pressure as a function of hoop strain:

 Eq 4

 

Resistance of a conductor of length L, cross-sectional area A, and resistivity ρ is

 Eq 5

Consequently, a small differential change in ΔR/R can be expressed as

 Eq 6

Where ΔL/L is longitudinal strain ε, and ΔA/A is –2νε where ν is the Poisson’s ratio of the resistive material. Substitution and factoring out ε from the right hand side leaves

 Eq 7

Where Δρ/ρε can be considered nearly constant, and thus the parenthetical term effectively becomes a single constant, the gage factor, GF

 Eq 8

For Wheat stone bridge:

 Eq 9

Given that R1=R3=R4=Ro, and R2 (the strain gage) = Ro + ΔR, substituting into equation above:

Eq9

Substituting e with respective stress-strain relation

Eq 10

 

part b

Since, axial strain(1-2v) < hoop strain (2-v). V out axial < V out hoop.

Hence, dV hoop < dV axial.

part c  

Given data:

P = 253313 Pa

D = d + 2t = 0.09013 m

t = 65 um

GF = 2

E = 75 GPa

v = 0.33

Use the data above and compute Vout using Eq3

Eq 11  

Explain the concept of an electric field as if you were addressing a friend or relative.

Answers

Answer: Electric Field Formula An electric charge produces an electric field, which is a region of space around an electrically charged particle or object in which an electric charge would feel force. The electric field exists at all points in space and can be observed by bringing another charge into the electric field.

Explanation:

The density of a fluid is given by the empirical equation rho 70:5 exp 8:27 107 P where rho is density (lbm/ft3 ) and P is pressure (lbf/in2 ). (a) What are the units of 70:5 and 8:27 107?

Answers

Answer:

The unit of 70.5 is lbm/ft^3

The unit of 8.27×10^7 is in^2/lbf

Explanation:

The unit of 70.5 has the same unit as density which is lbm/ft^3 because exponential is found of constant values (unitless values)

The unit of 8.27×10^7 (in^2/lbf) is the inverse of the unit of pressure P (lbf/in^2) because the units have to cancel out so a unitless value can be obtained. Exponential is found of figures with no unit

A car starts at rest and moves along a perfectly straight highway with an acceleration of α1 = 10 m/s2 for a certain amount of time t1. It then moves with constant speed (zero acceleration) for a time t2 and finally decelerates with an acceleration α2= -10 m/s2 for a time t3 until it comes to a complete stop. The total time of motion is t1 +t2+t3=25 s. The total distance travelled by the car is 1 km. Find t2 Hints: (i) Recognize that each segment of the journey is at constant acceleration! (ii) What is the relationship between the quantities t1, t2, and t3? Use this to help simplify the set of equations that you obtain during the solution process

Answers

Answer:

t1 = t3 = 5 seconds

t2 = 15 seconds

Explanation:

For t = t1

a = 10 m/s^2

v(t) = 10*t

s(t) = 5*t^2

Distance traveled = 5*t1^2

For t = t2

a = 0 m/s^2

v(t) = 10*t1

s(t) = 10*t1*t

Distance traveled = 10*t1*t2

For t = t3

a = -10 m/s^2

v(t) = -10*t

s(t) = - 5t^2

Distance traveled = 5t3^2

Sum of all distances = 5*t1^2 + 10*t1*(t2) + 5t3^2

1000 = 5t1^2 + 10t1t2 + 5t3^2 + 10*t1*t2 ....... Eq 1

Distance traveled in first and last segments are the same:

t1 = t3 ..... Eq 2

Given: t1+t2+t3 = 25  .... Eq 3

Solving Equations simultaneously:

Subs Eq 2 into Eq 3 & Eq 1

1000 = 5t1^2 + 10*t1*t2 + 5*t1^2

100 = t1^2 + t1*t2  ..... Eq 4

2t1 + t2 = 25

t2 = 25 - 2t1  .... Eq 5

Subs Eq 5 into Eq 4

100 =  t1^2 + t1*(25 - 2t1)

t1^2 -25t1 + 100 = 0

Solve for t1

t1 = 5 , 20 Hence, t1 = 5 sec is selected

t1 = t3 = 5 sec

t2 = 15 sec

Consider a thin suspended hotplate that measures 0.25 m × 0.25 m. The isothermal plate has a mass of 3.75 kg, a specific heat of 2770 J/kg·K, and a temperature of 250°C. The ambient air temperature is 25°C and the surroundings temperature is 25°C. If the convection coefficient is 6.4 W/m2·K and the emissivity of the plate is 0.42, determine the time rate of change of the plate temperature, , when the plate temperature is 250°C. Evaluate the magnitude of the heat losses by convection and by radiation.

Answers

Answer:

Heat losses by convection, Qconv = 90W

Heat losses by radiation, Qrad = 5.814W

Explanation:

Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:

1. Radiation

2. Conduction

3. Convection

Convection is defined as the transfer of heat through the actual movement of the molecules.

Qconv = hA(Temp.final - Temp.surr)

Where h = 6.4KW/m2K

A, area of a square = L2

= (0.25)2

= 0.0625m2

Temp.final = 250°C

Temp.surr = 25°C

Q = 64 * 0.0625 * (250 - 25)

= 90W

Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.

Qrad = E*S*(Temp.final4 - Temp.surr4)

Where E = emissivity of the surface

S = boltzmann constant

= 5.6703 x 10-8 W/m2K4

Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)

= 5.814 W

Final answer:

The time rate of change of the hotplate's temperature is 0.0062 K/s. The magnitude of the heat losses by convection and radiation is 64.23 W.

Explanation:

The question is asking for the time rate of change of the plate temperature when it is at 250°C and the magnitude of the heat losses by convection and by radiation.

First, transform the initial plate temperature from Celsius to Kelvin, so 250°C = 523.15 K.

The air temperature is also given in Celsius, which is 25°C = 298.15 K.

Next, we calculate the heat loss due to convection using the formula Q_conv = h * A * (T_plate - T_air), where h is the convection coefficient, A is the surface area of the plate, and T_plate and T_air are the temperatures of the plate and the air, respectively.

Substituting the given values, we get: Q_conv = 6.4 W/m^2.k * 0.25 m * 0.25 m * (523.15 K - 298.15 K) = 1.80 W.

The heat loss due to radiation can be calculated using the Stefan-Boltzmann law: Q_rad = ε * σ * A * (T_plate^4 - T_surrounding^4), where ε is the emissivity, σ is the Stefan-Boltzmann constant (5.67 * 10^-8 W/m^2.K^4), and T_surrounding is the surrounding temperature.

Again plugging in the given values, we get the heat loss due to radiation as Q_rad = 0.42 * 5.67 * 10^-8 W/m^2.K^4 * 0.25 m * 0.25 m * (523.15 K^4 - 298.15 K^4) = 62.43 W.

So, the total heat loss Q = Q_conv + Q_rad = 1.80 W + 62.43 W = 64.23 W.

To find the time rate of change of the temperature, we use the formula: dT/dt = Q / (m*C), where dT/dt is the time rate of change of the plate temperature, m is the mass, and C is the specific heat. Substituting the values, we get: dT/dt = 64.23 W / (3.75 kg * 2770 J/kg.K) = 0.0062 K/s.

Learn more about Heat Transfer here:

https://brainly.com/question/34419089

#SPJ3

The atomic radii of Mg2+ and F- ions are 0.079 and 0.120 nm, respectively.

(a) Calculate the force of attraction between these two ions at their equilibrium inter-ionic separation (i.e., when the ions just touch each other).

(b) What is the force of repulsion at this same separation distance?

Answers

Answer:

a)  1.165 × 10⁻⁸ N b)- 1.165 × 10⁻⁸ N

Explanation:

Using Coulomb's law

F(attraction) = [tex]\frac{Z1Z2qelectron}{4piER^2}[/tex]

where

R = sum of the distance between the centers of charges = sum of ionic radii = 0.079 nm + 0.120nm = 0.199 nm = 0.199 × 10⁻⁹ m

Z₁ = valency of Mg²⁺ = 2

Z₂ = valency of F ⁻ = - 1

qelectron = charge on electron =1.062 × 10⁻19 C

E = permitivity of free space = 8.85 × 10 ⁻¹² C²/ Nm²

Fa= (1×2× (1.602 × 10⁻¹⁹)²) / (4× 3.142 × 8.85 × 10⁻¹² × (0.199 × 10⁻⁹)²) = 1.165 × 10⁻⁸ N

b) At equilibrium F of repulsion = - F of attraction = - 1.165 × 10⁻⁸ N

A particle is moving along a circular path having a radius of 6 in. such that its position as a function of time is given by θ=cos2t, where θ is in radians and t is in seconds.

Determine the magnitude of the acceleration of the particle when θ= 35 ∘

Answers

Answer:

The angular acceleration is -2.44 rad/s², while the linear acceleration is -14.66 in/s².

Explanation:

First we need to find the time, at the given position. W e are given the position of particle to be:

θ = 35°

Converting it to radians because, the given equation is in radians:

θ = (35°) (π radians/180°)

θ = 0.611 radians

Now, we have the equation:

θ = Cos(2t)

2t = Arc Cos (θ)

2t = Arc Cos (0.611 radians)

t = 0.91/2

t = 0.457 sec

Now, to determine angular acceleration of the particle, we must derivate the equation twice with respect to 't'

Angular Velocity = ω = dθ/dt = -2Sin(2t)

Angular Acceleration = α = -4Cos(2t)

Now, we use the value of t:

α = -4Cos(2 x 0.457)

α = -2.44 rad/s² (negative sign shows decceleration)

Now for linear acceleration, we know that:

a = rα

a = (6 in)(-2.44 rad/s²)

a = -14.66 in/s² (negative sign shows decceleration)

Other Questions
Deontologists would agree that the increasing medical concern over obesity in the United States justifies federal regulation of high fat, high sugar, low nutrition food advertising during children's television programs. True False Populations in Haiti and Chile both experienced earthquakes in 2010. The main reason that so many more people died in Haiti (100,000+) than in Chile (523) is:________ in pakistan rivers are used to irrigate farmland but not in Bangladesh true or false What made the plant breeding studies performed by Mendel more successful than plant breeding studies performed by others? Xsis Inc. is an information technology (IT) and services company. It used to outsource its technical support calls to a company located in a Southeast Asian country. Xsis Inc. started receiving a lot of complaints from customers on language difficulties and delays in reaching senior technicians when speaking to support personnel. The reduction in the volume of calls for its services led Xsis Inc. to terminate its outsourcing contract. Identify the appropriate issue related to outsourcing that led Xsis Inc. to terminate its contract with the company in Southeast Asia.a. Employee moraleb. Technical and legal issuesc. Negative impact on customer relationships and satisfactiond. Data security and integrity issues What is 594 divided by 4 using long division The time spent on design will vary, dependent on the complexity of the problem. Why is it important to give the design process adequate time? Y=x2-2x-5Change to vertex form Which statement is an example of direct democracy?A)People elect a Senator to the U.S. Congress.B)The town council approves funding for a new high school.C)The President issues an executive order preventing states from executing prisoners.D)Voters approve an amendment allowing elderly people to pay nothing in property tax. Assuming that the long term rate of displacement along the San Andreas Fault (about 3.5 cm/year) remains the same and that the location of the fault remains the same, how long would it take Los Angeles (on the west side of the fault) to move north 620 kilometers to the position of San Francisco (on the east side of the fault)? For children with two myopic parents, the likelihood of becoming myopia is _____ correlated with the number of hours spent playing sports each week. Imagine a community where premarital sex is strongly discouraged. Which of the following would most likely occur?earlier marriageforced marriagehigher rates of mental illnessmore social intimacy Who does not face trade-offs? a. Super-rich CEOs of high-powered corporations b. You c. The U.S. governmentd. Everybody faces trade-offs You The U.S. government Calvin, who is trying to impress his psychology professor with his knowledge of infant motor development, asks why some infants learn to roll over before they lift their heads from a prone position, while others develop these skills in the opposite order. What should Calvin's professor conclude from this question?A) Calvin clearly understands that the sequence of motor development is not the same for all infants.B) Calvin doesn't know what he's talking about. Although some infants reach these developmental milestones ahead of others, the order is the same for all infants.C) Calvin needs to be reminded that rolling over is an inherited reflex, not a learned skill.D) Calvin understands an important principle: motor development is unpredictable. how did civilization evolve from the river valley time period to the end of the classical era? Is cypris autotrophic or heterotrophic James flips a fair numbered cube with faces numbered 1-6 and flips a quarter what is the probability that in one turn James could roll an odd number and flip a heads on the quarter If a book distributor decides to send a brief survey to its customers to find out why they are not ordering as many booksas they did in the past, the marketing department has deci conductdescriptive researchexploratory researchOcasual researchqualitative research __________ conflict management norms resolve conflict openly, whereas __________ conflict management norms tend to avoid addressing conflict The Domain Name Service is what translates human-readable domain names into IP addresses that computers and routers understandA. TrueB. False Steam Workshop Downloader