Step-by-step explanation:
Hi! I am a little confused because in this question they would normally ask for the equation of the line but if you are wondering what the slope is, it says in the information that the slope is 2. I will solve for the line equation anyway though.
A line has this form: y=mx+b.
For this question they will want us to give the answer with x and y as variables (letters) and m and b (the slope and y-intercept respectivly) with numerical values.
First, we can put in the point into the equation. The point given is (14,33) so the x value is 14 and they y value is 33.
y=mx+b
33=m(14)+b
We know the slope is 2 (from the given information) so we can substitute that in for m.
33=(2)(14)+b
Solving for b, the Y-intercept, we get b=5.
Perhaps your question was "what is the Y-intercept" and then this would be the answer.
Finally, the final equation for the line is:
y=2x+5
Hope this helps!
Rewrite the equation by completing the square.
4x^2 + 28x + 49=0
Answer:
[tex]4(x+3.5)^{2}=0[/tex]
Step-by-step explanation:
we have
[tex]4x^{2}+28x+49=0[/tex]
step 1
Group terms that contain the same variable, and move the constant to the opposite side of the equation
[tex](4x^{2}+28x)=-49[/tex]
step 2
Factor the leading coefficient
[tex]4(x^{2}+7x)=-49[/tex]
step 3
Complete the square. Remember to balance the equation by adding the same constants to each side
[tex]4(x^{2}+7x+3.5^2)=-49+(3.5^2)(4)[/tex]
[tex]4(x^{2}+7x+12.25)=0[/tex]
step 4
Rewrite as perfect squares
[tex]4(x+3.5)^{2}=0[/tex]
The equation by completing the square is [tex]\[ (x + \frac{7}{2})^2 = 0 \].[/tex]
To complete the square for the quadratic equation [tex]\(4x^2 + 28x + 49 = 0\)[/tex], we need to follow these steps:
Divide the entire equation by the coefficient of [tex]\(x^2\)[/tex] to make it equal to 1. This gives us:
[tex]\[ x^2 + 7x + \frac{49}{4} = 0 \][/tex]
Next, we need to find the value to complete the square. This is done by taking half of the coefficient of [tex]\(x\)[/tex], which is [tex]\(\frac{7}{2}\)[/tex], and squaring it:
[tex]\[ \left(\frac{7}{2}\right)^2 = \frac{49}{4} \][/tex]
We add and subtract this value to the equation to complete the square:
[tex]\[ x^2 + 7x + \frac{49}{4} - \frac{49}{4} + \frac{49}{4} = 0 \][/tex]
Now, we can rewrite the equation as a perfect square trinomial and a constant:
[tex]\[ (x + \frac{7}{2})^2 - \frac{49}{4} + \frac{49}{4} = 0 \][/tex]
Simplify the equation by combining the constants:
[tex]\[ (x + \frac{7}{2})^2 = 0 \][/tex]
Which data set below has the weakest correlation?
The weakest correlation is indicated by a correlation coefficient that is close to 0. This shows that there is little to no predictable relationship between the two variables.
Explanation:The data set with the weakest correlation will have a correlation coefficient value closest to zero. The correlation coefficient is a measure of the relationship between two variables. Its value ranges from -1 to 1. A value of -1 indicates a perfect negative correlation, a value of 1 indicates a perfect positive correlation, and a value of 0 indicates no correlation. The direction of the correlation is indicated by whether the value is positive or negative, whereas the strength of the correlation is indicated by how close the value is to -1 or 1.
For example, consider two variables, hours of sleep and performance on a test. If the correlation coefficient is close to 1, this suggests that as one variable increases (hours of sleep), the other variable (test performance) also increases. This would be a strong positive correlation. But if the correlation coefficient is close to 0, there is a weak or no correlation, meaning the variables (for example, shoe size and hours of sleep) do not move together in a predictable way.
Learn more about Correlation here:https://brainly.com/question/36761554
#SPJ11
When Dahlia meets her fitness trainer, which quantity would be appropriate for describing the amount of milk she drinks
each day?
1.99 liters
2 liters
2.02 liters
2 liters and 5 milliliters
Answer
It would be 2 liters
Answer:
1.99 liters is the correct answer
Step-by-step explanation:
The Equation is 34 + 4 ⋅ 5 = ____. (input whole numbers only)
Answer:
54
Step-by-step explanation:
34 + 4 ⋅ 5 (by PEDMAS, do multiply first)
= 34 + 20
= 54
Answer:
54 :)
Step-by-step explanation:
Two students are asked to come to the board to work a math problem. Each student could work an easy question (E) or a hard question (H). Drag and drop the letters to show all the possible outcomes for the students' choices. List the first student's choice followed by the second student's choice.
Answer:
E
Step-by-step explanation:
how to distribute -2(x-3)^2
The distributed form of -2(x-3)^2 is -2x^2 + 12x - 18.
Step-by-step explanation:
The given question is -2(x-3)^2
step 1 :The formula for (a-b)^2 = a^2 - 2ab + b^2
step 2 :Here, the term (x-3)^2 = x^2 - (2*3x) + 3^2
= x^2 - 6x + 9
step 3 :The expanded form = -2 (x^2 - 6x + 9)
step 4 : where -2 can be distributed to each term inside the bracket.
Therefore, -2(x^2 - 6x + 9) = -2x^2 + 12x - 18
If you have 3 quarters, 5 dimes, and 2 nickels in
your pocket what is the probability you will pick a
dime and then a quarter without putting the dime
back in your pocket?
Answer:
Step-by-step explanation:
No. Of quarters n(Q)= 3
No. Of dimes n(D) = 5
No. Of nickels n(N) = 2
Total T = 3+5+2 = 10
Prob(D) = n(D)/T = 5/10 = 1/2
Now there are 9 left since it is not replaced back
Prob(Q) = 3/9 = 1/3
Prob(D and Q) = 1/2 × 1/3 = 1/6
The probability you will pick a dime and then a quarter without putting the dime back in your pocket is 1/6
What is probability?Probability is the likelihood or chance that an event will occur
If you have 3 quarters, 5 dimes, and 2 nickels in your pocket, the total coins you have will be:
Total outcome = 3 + 5 + 2
Total outcome = 10
Probability of picking a dime = 5/10 = 1/2
Probability of picking a quarter = 3/9 = 1/3
Pr( a dime and then a quarter without putting the dime back in your pocket) = 1/2 * 1/3 = 1/6
Hence the probability you will pick a dime and then a quarter without putting the dime back in your pocket is 1/6
Learn more on probability here: https://brainly.com/question/25870256
Point J is the midpoint of segment FG with endpoints F(1,4) and G(5,12). Point K is the midpoint of segment GH with endpoints G(5,12) and H(-1,4). What is the measure of JK?
Answer:
1 unit
Step-by-step explanation:
If point J is the midpoint of segment FG with endpoints F(1,4) and G(5,12), then its coordinates are
[tex]x_J=\dfrac{x_F+x_G}{2}=\dfrac{1+5}{2}=3\\ \\y_J=\dfrac{y_F+y_G}{2}=\dfrac{4+12}{2}=8[/tex]
If point K is the midpoint of segment GH with endpoints G(5,12) and H(-1,4), then its coordinates are
[tex]x_K=\dfrac{x_G+x_H}{2}=\dfrac{5+(-1)}{2}=2\\ \\y_K=\dfrac{y_G+y_H}{2}=\dfrac{12+4}{2}=8[/tex]
The measure of JK is
[tex]JK=\sqrt{(3-2)^2+(8-8)^2}=\sqrt{1^2+0^2}=1\ unit[/tex]
Given the coordinates of their endpoints, you find that the points of interest, J and K, have coordinates J(3,8) and K(2,8), respectively. You can then apply the distance formula to find the distance between these two points, resulting in 1.
Explanation:To find the distance between two points, we can apply the distance formula: d = sqrt((x2 - x1)^2 + (y2 - y1)^2).
Given that J is the midpoint of FG, the coordinates of J can be found using the midpoint formula ((x1 + x2) / 2, (y1 + y2) / 2). By applying this formula, we find that J = ((1 + 5) / 2, (4 + 12) / 2) = (3,8).
Similarly, the coordinates of K, as the midpoint of GH, are K = ((5 + (-1)) / 2, (12 + 4) / 2) = (2,8).
Now we can plug the coordinates of J and K into the distance formula to find JK: d = sqrt((x2 - x1)^2 + (y2 - y1)^2) = sqrt((2 - 3)^2 + (8 - 8)^2) = sqrt((1)^2 + 0) = sqrt(1) = 1.
Learn more about Midpoint and Distance Formulas here:https://brainly.com/question/32604189
#SPJ3
What is the value of x?
Enter your answer in the box.
°
Answer:
x = 127
Step-by-step explanation:
The sum of the interior angles of a polygon is
sum = 180° (n - 2) ← n is the number of sides
Here n = 6, thus
sum = 180° × 4 = 720°
Sum the interior angles and equate to 720 for x
120 + 100 + 128 + 133 + 112 + x = 720, that is
593 + x = 720 ( subtract 593 from both sides )
x = 127
Consider the following piece-wise function. Which of the below correctly describes the graph shown?
Answer:
C
Step-by-step explanation:
The function is formed of 2 straight lines
The equation of a straight line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate the slope using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (- 4, - 5) and (x₂, y₂ ) = (2, - 2) ← endpoints of left line
m = [tex]\frac{-2+5}{2+4}[/tex] = [tex]\frac{3}{6}[/tex] = [tex]\frac{1}{2}[/tex]
Note the line crosses the y- axis at (0, - 3) ⇒ c = - 3
y = [tex]\frac{1}{2}[/tex] x - 3 for x < 2 ( arrow on line points left )
Repeat
with (x₁, y₁ ) = (2, - 2) and (x₂, y₂ ) = (3, 1) ← 2 points on right line
m = [tex]\frac{1+2}{3-2}[/tex] = [tex]\frac{3}{1}[/tex] = 3, thus
y = 3x + c ← is the partial equation
To find c substitute either of the 2 points into the partial equation
Using (3, 1), then
1 = 9 + c ⇒ c = 1 - 9 = - 8
y = 3x - 8 for x ≥ 2 ( arrow on line points right )
Which pair of segments in the figures below are congruent?
AB and JK
AB and PN
BC and MN
BC and PN
Answer:
D.BC and Pn are corgruent.
Step-by-step explanation:
Pair of segments in the figures that are congruent : BC and PN.
What is congruence?In geometry, congruent means identical in shape and size. Congruence can be applied to line segments, angles, and figures. Any two line segments are said to be congruent if they are equal in length.
Given in the figure,
Two polygons ABCDEF and JKLMNP
where
AB≅MN
BC≅PN
CD≅PJ
DE≅JK
EF≅KL
FA≅LM
Hence, BC and PN is the pair of segments in the figures that are congruent.
Learn more about congruence here:
https://brainly.com/question/7888063
#SPJ6
The weight of meteorite A is 9 times the weight of meteorite B. If the sum of their weights is 220 tons, find the weight of each.
Answer:
A is 198
B is 22
Step-by-step explanation:
22 × 9 = 198
22 + 198 = 220
Ali runs 7 miles in 60 minutes. At the same rate, how many miles would he run in 24 minutes
Answer:
Ali would run 2.8 miles in 24 minutes.
Sum of first 1000 consecutive odd counting numbers
Answer:
100,000,000
Step-by-step explanation:
did some research to solve this one, i recommend looking more into to it to ensure that this is the correct answer ;)
The sum of the first 1000 consecutive odd counting numbers is 1,000,000.
To find the sum of the first 1000 consecutive odd counting numbers, we need to recognize a pattern and utilize a simple formula.
Step 1: Identify the Sequence of Odd Numbers
The first few odd counting numbers are:
1, 3, 5, 7, 9, 11, 13, ...
Step 2: Determine the Formula for the Sum
The sum of the first n odd counting numbers can be calculated using the formula:
Sum = n²
This means that the sum of the first n consecutive odd numbers is equal to the square of n.
Step 3: Apply the Formula to Our Problem
In this case, we want to find the sum of the first 1000 odd numbers. Therefore, we set n to 1000:
Sum = 1000²
Step 4: Calculate the Value
Now, we perform the calculation:
Sum = 1000 * 1000 = 1,000,000
Identify all points and line segments in the picture below.
What scale factor is applied to shape B to make shape A
(A) 8 , 6 , 2 , 2
(B) 12, 9 , 3 , 3
To find the scale factor, compare the corresponding dimensions of the two shapes. Divide the dimension of shape A by the corresponding dimension of shape B to calculate the scale factor.
Explanation:In order to find the scale factor applied to shape B to make shape A, we need to compare the corresponding dimensions of the two shapes. The scale factor is determined by dividing the dimension of shape A by the corresponding dimension of shape B. In this case, we compare the lengths of the shapes, so the scale factor is determined by dividing the length of shape A by the length of shape B.
Let's calculate the scale factor:
For the length: A/B = 8/12 = 2/3For the width: A/B = 6/9 = 2/3For the height: A/B = 2/3 = 2/3Therefore, the scale factor is 2/3 for all dimensions of shape B to make shape A.
Point A(7, 3) is translated to A prime (16, negative 9). Which rule describes the translation? (x, y) right-arrow (x minus 9, y minus 12) (x, y) right-arrow (x minus 9, y + 12) (x, y) right-arrow (x + 9, y + 12) (x, y) right-arrow (x + 9, y minus 12)
Answer:
[tex](x,y) -----> (x+9,y-12)[/tex]
Step-by-step explanation:
we know that
[tex]A(7, 3) ----> A'(16,-9)[/tex]
The rule of the translation is equal to
[tex](x,y) -----> (x+a,y+b)[/tex]
Find the values of a and b
[tex](7,3) -----> (7+a,3+b)[/tex]
we have that
[tex]7+a=16[/tex] ----> [tex]a=16-7=9[/tex]
[tex]3+b=-9[/tex] ---->[tex]b=-9-3=-12[/tex]
substitute the values of a and b
[tex](x,y) -----> (x+9,y-12)[/tex]
That means----> The translation is 9 units right and 12 units down
Answer:
Option D:
(x, y) -> (x + 9, y minus 12)
Step-by-step explanation: Honestly all people want are the answers so I don't really care to write an explanation.
The numerator and denominator of a fraction are in the ratio of 3 to 5. If the numerator and denominator are both increased by 2, the fraction is now equal to .
If n = the numerator and d = the denominator, which of the following systems of equations could be used to solve the problem?
Question:
The numerator and denominator of a fraction are in the ratio of 3 to 5. If the numerator and denominator are both decreased by 2, the fraction is now equal to [tex]\frac{1}{2}[/tex].
If n = the numerator and d = the denominator, which of the following systems of equations could be used to solve the problem?
5n = 3d and n - 2 = 2d - 4
5n = 3d and 2n - 4 = d - 2
3n = 5d and 2n - 4 = d - 2
Answer:
5n = 3d and 2n – 4 = d – 2
Solution:
Let n be the numerator of the fraction and d be the denominator of the fraction.
Given the numerator and denominator of a fraction are in the ratio of 3 to 5.
This can be written as n : d = 3 : 5.
⇒ [tex]\frac{n}{d}= \frac{3}{5}[/tex] – – – – (1)
Do cross multiplication, we get
⇒ 5n = 3d
When the numerator and denominator are decreased by 2, the fraction is equal to [tex]\frac{1}{2}[/tex].
⇒ [tex]\frac{n-2}{d-2}= \frac{1}{2}[/tex]
Do cross multiplication, we get
⇒ 2(n –2)=1(d – 2)
⇒ 2n – 4 = d – 2
Hence, 5n = 3d and 2n – 4 = d – 2 can be used to solve the problem.
Answer:
5n = 3d and 2n – 4 = d – 2 is the answer
Step-by-step explanation:
How do the values of the 4s in 64.723 and 9.048 compare? Select from the drop-down menu to correctly complete the statement. The value of the 4 in 64.723 is times the value of the 4 in 9.048. choose 10 100 1,000
Answer:
Dividing 4 × 1 by 4 × 0.01 = [tex]\dfrac{ 4 \times 1}{4 \times 0.01}[/tex] = 100
Step-by-step explanation:
i) the value of 4 in 64.723 is given by 4 × 1 = 4, because 4 is the one's place
ii) the value of 4 in 9.048 is is given by 4 × 0.01 = [tex]\dfrac{4}{100}[/tex] = 0.04, because 4 is in the hundredth's place
iii) the value of 4 in 64.723 is 100 times the value of 4 in 9.048 which we get by dividing 4 × 1 by 4 × 0.01 = [tex]\dfrac{ 4 \times 1}{4 \times 0.01}[/tex] = 100
Answer:
100
Step-by-step explanation:
If the volume of the crystal ball is about 113 14 cm", the radius of the ball is approximately 3 cm. (Use = 7.)
If the vacant space inside the box were filled with spray foam, the approximate volume of foam required would be___
cm^3.
Answer:
The volume of required foam is 0.1 cm³
Step-by-step explanation:
Given as :
The volume of box = v = 113.14 cm³
The radius of the crystal ball = r = 3 cm
Let The volume of required foam = V cm³
According to question
Volume of crystal ball = [tex]\dfrac{4}{3}[/tex] × π × radius³ where π = 3.14
i.e Volume of ball = [tex]\dfrac{4}{3}[/tex] × π × 3³
Or, Volume of ball = [tex]\dfrac{4}{3}[/tex] × π × 27
Or, Volume of ball = [tex]\dfrac{4}{3}[/tex] × 3.14 × 27
Or, Volume of ball = 4 × 3.14 × 9
Or, Volume of ball = 113.04 cm³
Again
∵ volume of crystal ball = v' = 113.04 cm³
So , The volume of required foam = volume of box - volume of crystal ball
Or, V = v - v'
Or, V = 113.14 cm³ - 113.04 cm³
∴ V = 0.1 cm³
So, The volume of required foam = V = 0.1 cm³
Hence, The volume of required foam is 0.1 cm³ . Answer
Answer:
B and B for plato
Step-by-step explanation:
Javier bought a microwave for $105.The cost was 30% off the original price.what was the price of the microwave before the sale
Answer:
$ 150
Step-by-step explanation:
Given:
Cost price of a microwave = $105
Discount % = 30
Question asked:
what was the price of the microwave before sale = ?
Solution:
Let the price of the microwave before sale = [tex]x[/tex]
Price before sale - 30 % discount = cost price of microwave (by Javier)
[tex]x - 30\% of x = 105[/tex]
[tex]x - \frac{30x}{100} = 105[/tex]
[tex]\frac{70x}{100} = 105\\[/tex]
Multiplying both side by 100
[tex]70x = 105 \times 100[/tex]
[tex]70x = 10500[/tex]
Dividing both side by 70
[tex]x = \frac{10500}{70} \\x = 150[/tex]
x = price of the microwave before sale = $ 150
Thus, price of the microwave before the sale = $150
Cindy’s apartment complex is offering renters insurance through their insurance company. The insurance company charges an annual premium of $565.00 which can be paid in equal payments throughout the year with her monthly rent. Cindys monthly rent is currently $789.00. What will Cindy's new rent be if she includes the renters insurance
Answer:
C: $836.08
Step-by-step explanation:
Edg 2020
The Cindy's new rent be if she includes the renters insurance is $836.08
We are given that;
An annual premium = $565.00
Now,
To find Cindy's new rent, we need to add the monthly payment for the renters insurance to her current rent.
To find the monthly payment for the insurance, we need to divide the annual premium by 12, since there are 12 months in a year. We get:
565 / 12 = 47.08
So, the monthly payment for the insurance is $47.08.
Adding this to Cindy's current rent, we get:
789 + 47.08 = 836.08
Therefore, by unitary method the answer will be $836.08.
Learn more about the unitary method, please visit the link given below;
https://brainly.com/question/23423168
#SPJ6
Jeremy has a deck of cards numbered 1-12. He picks one card and then replaces it. Then he picks another card. What is the probability he picks a 1 and then a 12?
Final answer:
The probability of picking a 1 and then a 12 from a deck of cards numbered 1-12 with replacement is 1/144, since each event is independent and each card has an equal chance of being selected.
Explanation:
The student asked about the probability of selecting a 1 and then a 12 from a deck of cards numbered 1-12, with replacement in between the picks. To find this, we need to consider the events independently, since the card is replaced after the first draw, meaning the probability of the second draw is unaffected by the first.
The formula to calculate the probability of independent events is P(A and B) = P(A) × P(B), where P(A) is the probability of the first event and P(B) is the probability of the second event occurring. Since each card has an equal chance of being picked from the deck, and there are 12 cards in total, the probability of picking any specific card, like a 1 or a 12, is 1/12.
Therefore, the probability of picking a 1 first and then a 12 is P(1 and then 12) = P(1) × P(12), which is equal to (1/12) × (1/12) = 1/144. So, the final probability is 1/144, or about 0.00694.
Simplify the expression 7X3g
Answer:
21g
Step-by-step explanation:
you multiply the 7 and the 3 together and get 21
Round 87,067 to the nearest ten thousand
Answer:
87067=90000
Step-by-step explanation:
because 7 is bigger than 8 so its90000
Answer:
90,000
Step-by-step explanation:
What is the fraction for 45 divided by 20 please show work
Final answer:
The fraction for 45 divided by 20 is written as 45/20, which can be simplified by dividing both the numerator and the denominator by their greatest common divisor, 5. This results in a simplified fraction of 9/4.
Explanation:
To find the fraction for 45 divided by 20, you can write it directly as a fraction, which is 45/20. This fraction can be simplified by finding the greatest common divisor (GCD) of the numerator and the denominator. The GCD of 45 and 20 is 5. To simplify the fraction, we divide both the numerator and denominator by 5.
Simplified fraction:
45 ÷ 5 = 9
20 ÷ 5 = 4
So, the simplified fraction for 45 divided by 20 is 9/4.
AGAIN this is the like the 5th time trying to get an answer and I am so tired and I just want to sleep but I have to finish this so please can someone help me with this 7th grade math homework
pls HELP ive been trying to figure this out forever!!!
The solution set for -18 < 5 x - 3 is _____.
a. -3 < x
b. 3 < x
c. -3 > x
d. 3 > x
Answer:
I think is B .3 < x
hope it helps!
Answer:
-3< X is the correct answer. sorry if i'm to late:(
Step-by-step explanation:
Two angles in a triangle measure 28 degrees and 93 degrees. What is the measure of the third angle?
59 degrees
87 degrees
121 degrees
152 degrees
Answer:
59
Step-by-step explanation:
The three interior angles in a triangle will always add up to 180°, so:
180-93-28=59
The measure of the third angle is 59 degrees.
What is Triangle?A triangle is a two dimensional figure which consist of three vertices, three edges and three angles.
Sum of the interior angles of a triangle is 180 degrees.
Given are two angles of a triangle.
First angle = 28 degrees
Second angle = 93 degrees
We know that, the sum of the all the three interior angles of a triangle is 180 degrees.
Let x be the measure of third angle.
x + 28 + 93 = 180
x + 121 = 180
Subtracting 121 from both sides,
x = 180 - 121 = 59 degrees
Hence the third angle is 59 degrees.
To learn more about Triangles, click :
https://brainly.com/question/1325276
#SPJ6
someone help me with this please.
Answer:
c. -51 i know bc i used a math app and it is always right
Step-by-step explanation:
welcome