The magnitude of the magnetic field in a magnetic resonance imaging (MRI) machine can be as great as B = 2.0 T . Under normal circumstances, this field cannot be shut off by just flipping a switch. Instead the magnitude needs to be carefully decreased to zero. In an emergency, however, the magnet can be "quenched" so that B reduces to zero in 20 s. Such a quench can cost thousands of dollars and likely damages the magnets. Assume that the magnetic field exists inside a cylinder of radius R = 400 mm and length ℓ = 300 mm .

1. How much magnetic potential energy is dissipated when the magnetic field is quenched in this way?2. What is the average rate at which energy is dissipated?

Answers

Answer 1

Answer

given,

B = 2 T

time = 20 s

Radius = R = 400 mm

L= 300 mm

apply the formula for magnetic energy density

[tex]\eta_0 = \dfrac{energy}{volume}[/tex]

[tex]\eta_0 = \dfrac{B^2}{2\mu}[/tex]

[tex]\eta_0 = \dfrac{2^2}{2\times 4 \pi 10^{-7}}[/tex]

energy density = 1.59 x 10⁶ J/m³

Now , in the cylinder  ,

Energy   = energy density  x volume

E = 1.59 x 10⁶  x π x r² x h

E = 1.59 x 10⁶  x π x 0.4² x 0.5

E = 4 x 10⁵  J

now, average rate of energy dissipated

rate of dissipation of energy = Energy/time  

                                                = 4 x 10⁵ /20

                                                = 2 x 10⁴ W

the average rate at which energy is dissipated is 2 x 10⁴ W

Answer 2

1. The energy be "4 × 10⁵ J".

2. The average rate be "2 × 10⁴ W"

Magnetic field

According to the question,

Time, t = 20 s

Radius, R = 400 mm

Length, L = 300 mm

We know the formula,

Magnetic energy density,

→ [tex]\eta_0[/tex] = [tex]\frac{Energy}{Volume}[/tex]

      = [tex]\frac{B^2}{2 \mu}[/tex]

By substituting the values, we get

      = [tex]\frac{(2)^2}{2\times 4 \pi 10^{-7}}[/tex]

      = 1.59 × 10⁶ J/m³

Now,

1.

Energy will be:

= Energy density × Volume

= 1.59 × 10⁶ × π × (0.4)² × 0.5

= 4 × 10⁵ J

2.

We know,

The rate of dissipation = [tex]\frac{Energy}{Time}[/tex]

                                       = [tex]\frac{4\times 10^5}{20}[/tex]

                                       = 2 × 10⁴ W

Thus the above response is correct.

Find out more information about magnetic field here:

https://brainly.com/question/14411049


Related Questions

An engineer has an odd-shaped 13.5 kg object and needs to find its rotational inertia about an axis through its center of mass. The object is supported on a wire stretched along the desired axis. The wire has a torsion constant κ = 0.618 N·m. If this torsion pendulum oscillates through 28 cycles in 58.1 s, what is the rotational inertia of the object?

Answers

Answer:

I = 0.0674 kg.m²

Explanation:

given,

mass = 13.5 Kg

torsion constant = k = 0.618 N.m

number of cycle = 28

time = 58.1 s

Time of one cycle

[tex]T = \dfrac{58.1}{28}[/tex]

[tex]T =2.075\ s[/tex]

we know,

[tex]T = 2\pi\sqrt{\dfrac{I}{k}}[/tex]

[tex]I = k (\dfrac{T}{2\pi})^2[/tex]

[tex]I =0.618\times \dfrac{T^2}{4\pi^2}[/tex]

[tex]I =0.618\times \dfrac{2.075^2}{4\pi^2}[/tex]

      I = 0.0674 kg.m²

the rotational inertia of the object is equal to  I = 0.0674 kg.m²

A special system is set up in a lab that lets its user select any wavelength between 400nm and 700 nm with constant intensity. This light is directed at a thin glass film (n =1.53) with a thickness of 350 nm and that is surrounded by air. As one scans through these possible wavelengths, which wavelength of light reflected from the glass film will appear to be the brightest, if any?

a) 428 nm

b) 535 nm

c) 657 nm

d) 700 nm

e) Since the intensity of the light is constant,
all wavelengths of light reflected from the glass will appear to be the same.

Answers

Answer:

Explanation:

The case relates to interference in thin films , in which we study interference of light waves reflected by upper and lower surface of a medium or glass.

For constructive interference , the condition is

2μt = ( 2n+1)λ/2

μ is refractive index of glass , t is thickness , λ is wavelength of light.

putting the given values

2 x 1.53 x 350 x 10⁻⁹ = ( 2n+1) λ/2

λ = 2142nm /  ( 2n+1)

For n = 2

λ = 428 nm

This wave length will have constructive interference making this light brightest of all .

For n = 1

λ = 714  nm

So second largest  brightness will belong to 700 nm wavelength.

A 0.6-m3 rigid tank contains 0.6 kg of N2 and 0.4 kg of O2 at 300 K. Determine the partial pressure of each gas and the total pressure of the mixture. The gas constant for N2 is 0.2968 kPa·m3/kg·K and the gas constant for O2 is 0.2598 kPa·m3/kg·K.

Answers

Answer:

Pnitrogen=3.18 kPa, Poxygen=1.62 kPa , Ptotal= 4.80 kPa

Explanation:

partial pressure equation becomes Ptotal = Pnitrogen + Poxygen

Partial pressure of Nitrogen

Pnitrogen= nRT/V

n=no of moles =mass/molar mass

mass of nitrogen=0.6kg

Molar mass of nitrogen gas=28gmol^-1

n=0.6/28=0.0214moles

R=0.2968 kPa·m3/kg·K

T=300k

V=0.6m^3

Pnitrogen=(0.0214 * 0.2968 * 300)/0.6

Pnitrogen=3.18 kPa

Likewise

Poxygen=nRT/V

n=0.4/32=0.0125moles

R=0.2598 kPa·m3/kg·K

T=300k

V=0.6m^3

Poxygen=(0.0125 * 0.2598 * 300)/0.6

Poxygen=1.62 kPa

Ptotal= 3.18+1.62= 4.80 kPa

Final answer:

Using the ideal gas law, the partial pressure for Nitrogen ([tex]N_{2}[/tex]) and Oxygen ([tex]O_{2}[/tex]) is 148.4 kPa and 86.6 kPa respectively. The total pressure of the mixture is the sum of these two partial pressures, equaling 235 kPa.

Explanation:

The pressure exerted by individual gases in a mixture is known as partial pressure. The calculation of the partial pressure of each gas, and the total pressure of the mixture involves using the ideal gas law. In this case, the ideal gas equation is P = mRT/V, where P represents the pressure, m is the mass of gas, R is the gas constant, T is the temperature and V is the volume. Thus, for Nitrogen ([tex]N_{2}[/tex]), the partial pressure is (0.6 kg × 0.2968 kPa·m3/kg·K × 300K) / 0.6 m3 = 148.4 kPa, and for Oxygen ([tex]O_{2}[/tex]), the partial pressure is (0.4 kg× 0.2598 kPa·m3/kg·K × 300K) / 0.6 m3 = 86.6 kPa. The total pressure, then, is the sum of these partial pressures, which equals 148.4 kPa + 86.6 kPa = 235 kPa.

Learn more about Partial Pressure here:

https://brainly.com/question/31214700

#SPJ11

A silver bar of length 30 cm and cross-sectional area 1.0 cm2 is used to transfer heat from a 100°C reservoir to a 0°C block of ice.

How much ice is melted per second? (For silver, k = 427 J/s⋅m⋅°C. For ice, Lf = 334 000 J/kg.)
a. 4.2 g/s
b. 2.1 g/s
c. 0.80 g/s
d. 0.043 g/s

Answers

Answer:

d. 0.043 g/s

Explanation:

Formula for rate of conduction of heat through a bar per unit time is as

follows

Q = k A ( t₁ - t₂ ) / L

A is cross sectional area and L is length of rod ,( t₁ - t₂ )  is temperature

difference . Q is heat conducted per unit time

Putting the values in the equation

Q = (427 x 1 x 10⁻⁴ x 100 )/ 30 x 10⁻²

= 14.23 J/s

mass of ice melted per second

= Q / Latent heat of ice

= 14.23 / 334000

= 0.043 g/s

Final answer:

To find the mass of ice melted per second, the rate of heat transfer is calculated using the thermal conductivity of silver and the latent heat of fusion of ice. The calculated value of 0.426 g/s does not match the provided options, suggesting a possible typo in the options or the need for clarification.

Explanation:

The question is about calculating the amount of ice that is melted per second when a silver bar conducts heat from a hot reservoir to a block of ice. To answer this question, we will use the given thermal conductivity of silver (k = 427 J/s·m·°C), the cross-sectional area of the silver bar (1.0 cm2), and the latent heat of fusion for ice (Lf = 334,000 J/kg).

First, we need to calculate the rate of heat transfer (Q) from the 100°C reservoir through the silver bar to the 0°C ice using the formula:

Q = k · A · (ΔT/L),

where A is the cross-sectional area, ΔT is the temperature difference, and L is the length of the bar. Converting A to meters squared (A = 1.0 x 10-4 m2) and L to meters (L = 0.30 m), and plugging in the values:

Q = 427 J/s·m·°C · 1.0 x 10-4 m2 · 100°C / 0.30 m = 142.333 J/s.

Now, using the formula Q = mLf to find the mass of ice melted per second (m), where Q is the rate of heat transfer and Lf is the latent heat of fusion:

m = Q / Lf = 142.333 J/s / 334,000 J/kg = 0.000426 kg/s.

Converting this mass to grams (since 1 kg = 1000 g), we get:

m = 0.000426 kg/s · 1000 g/kg = 0.426 g/s.

This value is not exactly matching any of the options provided (a-d), but with rounding and considering significant figures, the closest answer would be 0.43 g/s, which is not listed amongst the options provided.

A parallel plate capacitor is being charged by a constant current i. During the charging, the electric field within the plates is increasing with time.

Which one of the following statements concerning the magnetic field between the plates is true?


A) The magnetic field within a parallel plate capacitor is always equal to zero teslas.

B) The induced magnetic field is directed antiparallel to the increasing electric field.

C) The induced magnetic field strength has its largest value at the center of the plates and decreases linearly toward the edges of the plates.

D) At a given moment, the induced magnetic field strength has the same magnitude everywhere within the plates of the capacitor, except near the edges.

E) The induced magnetic field strength is zero teslas near the center of the plates and increases as r increases toward the edges of the plates.

Answers

Answer:

E

Explanation:

The parallel plate capacitor is being charged by a steady current i. If the constant current is flowing along a straight wire, what happens inside the capacitor, between the plates is that the induced magnetic field strength is zero Tesla near the center of the plates and increases as r increases toward the edges of the plates.  

From Ampère–Maxwell law,  the magnetic field between the capacitor plates assuming that the capacitor is being charged at a constant rate by a steady current is  

                                B = μ₀r /2A [tex]\frac{dQ}{dt} e_{o}[/tex]    

where;

μ₀ is permeability  

Q(t) is the instantaneous charge on the positive plate,

A is the cross-sectional area of a plate and

e₀ is a unit vector

In a football game, a 90 kg receiver leaps straight up in the air to catch the 0.42 kg ball the quarterback threw to him at a vigorous 21 m/s, catching the ball at the highest point in his jump. Right after catching the ball, how fast is the receiver moving?

Answers

To solve this problem it is necessary to apply the equations related to the conservation of momentum. Mathematically this can be expressed as

[tex]m_1v_1+m_2v_2 = (m_1+m_2)v_f[/tex]

Where,

[tex]m_{1,2}[/tex]= Mass of each object

[tex]v_{1,2}[/tex] = Initial velocity of each object

[tex]v_f[/tex]= Final Velocity

Since the receiver's body is static for the initial velocity we have that the equation would become

[tex]m_2v_2 = (m_1+m_2)v_f[/tex]

[tex](0.42)(21) = (90+0.42)v_f[/tex]

[tex]v_f = 0.0975m/s[/tex]

Therefore the velocity right after catching the ball is 0.0975m/s

Final answer:

The receiver's final velocity is approximately 0.098 m/s.

Explanation:

First, we need to find the initial momentum of the ball by multiplying its mass (0.42 kg) by its velocity (21 m/s). The initial momentum of the ball is therefore 8.82 kg·m/s. Next, we need to find the final momentum of the receiver by multiplying his mass (90 kg) by his final velocity. Since he catches the ball at the highest point in his jump, his final velocity is 0 m/s. So the final momentum of the receiver is 0 kg·m/s. According to the law of conservation of momentum, the initial momentum of the ball must be equal to the final momentum of the receiver. Therefore, the final velocity of the receiver is 8.82 kg·m/s divided by his mass (90 kg), which is approximately 0.098 m/s.

Learn more about momentum here:

https://brainly.com/question/30677308

#SPJ11

You have 10 ohm and a 100 ohm resistor in parallel. You place this equivalent resistance in series with an LED, which is rated to have a voltage drop of 1.83V at 20mA. What voltage should you connect to this circuit to provide 20mA of current for the LED? What would the current be, if you connected to a 3V battery? Draw all of these diagrams before attempting the calculations.

Answers

Answer:

Approximately [tex]\rm 2.0\; V[/tex].

Approximately [tex]\rm 30 \; mA[/tex]. (assumption: the LED here is an Ohmic resistor.)

Explanation:

The two resistors here [tex]R_1= 10\; \Omega[/tex] and [tex]R_2= 100\; \Omega[/tex] are connected in parallel. Their effective resistance would be equal to

[tex]\displaystyle \frac{1}{\dfrac{1}{R_1} + \dfrac{1}{R_2}} = \frac{1}{\dfrac{1}{10} + \dfrac{1}{100}} = \frac{10}{11} \; \Omega[/tex].

The current in a serial circuit is supposed to be the same everywhere. In this case, the current through the LED should be [tex]20\; \rm mA = 0.020\; \rm A[/tex]. That should also be the current through the effective [tex]\displaystyle \rm \frac{10}{11} \; \Omega[/tex] resistor. Make sure all values are in standard units. The voltage drop across that resistor would be

[tex]V = I \cdot R = 0.020 \times \dfrac{10}{11} \approx 0.182\; \rm V[/tex].

The voltage drop across the entire circuit would equal to

the voltage drop across the resistors, plusthe voltage drop across the LED.

In this case, that value would be equal to [tex]1.83 + 0.182 \approx 2.0\; \rm V[/tex]. That's the voltage that needs to be supplied to the circuit to achieve a current of [tex]20\; \rm mA[/tex] through the LED.

Assuming that the LED is an Ohmic resistor. In other words, assume that its resistance is the same for all currents. Calculate its resistance:

[tex]\displaystyle R(\text{LED}) = \frac{V(\text{LED})}{I(\text{LED})}= \frac{1.83}{0.020} \approx 91.5\; \Omega[/tex].

The resistance of a serial circuit is equal to the resistance of its parts. In this case,

[tex]\displaystyle R = R(\text{LED}) + R(\text{Resistors}) = 91.5 + \frac{10}{11} \approx 100\; \Omega[/tex].

Again, the current in a serial circuit is the same in all appliances.

[tex]\displaystyle I = \frac{V}{R} = \frac{3}{100} \approx 0.030\; \rm A = 30\; mA[/tex].

A 5 kg object near Earth's surface is released from rest such that it falls a distance of 10 m. After the object falls 10 m, it has a speed of 12 m/s. Which of the following correctly identifies whether the object-Earth system is open or closed and describes the net external force?
A. The system is closed, and the net external force is zero.
B. The system is open, and the net external force is zero.
C. The system is closed, and the net external force is nonzero.
D. The system is open, and the net external force is nonzero.

Answers

Answer:D

Explanation:

Given

mass of object [tex]m=5 kg[/tex]

Distance traveled [tex]h=10 m[/tex]

velocity acquired [tex]v=12 m/s[/tex]

conserving Energy at the moment when object start falling and when it gains 12 m/s velocity

Initial Energy[tex]=mgh=5\times 9.8\times 10=490 J[/tex]

Final Energy[tex]=\frac{1}{2}mv^2+W_{f}[/tex]

[tex]=\frac{1}{2}\cdot 5\cdot 12^2+W_{f}[/tex]

where [tex]W_{f}[/tex] is friction work if any

[tex]490=360+W_{f}[/tex]

[tex]W_{f}=130 J[/tex]

Since Friction is Present therefore it is a case of Open system and net external Force is zero

An open system is a system where exchange of energy and mass is allowed and Friction is acting on the object shows that system is Open .

Light from a laser strikes a diffraction grating that has 5 300 grooves per centimeter. The central and first-order principal maxima are separated by 0.488 m on a wall 1.64 m from the grating. Determine the wavelength of the laser light. (In this problem, assume that the light is incident normally on the gratings.)

Answers

To solve this problem it is necessary to apply the concepts related to the principle of superposition, as well as to constructive interference. From the definition we know that this can be expressed mathematically as

[tex]sin\theta_m = \frac{m\lambda}{d}[/tex]

Where

m = Any integer which represent the number of repetition of spectrum

[tex]\lambda[/tex]= Wavelength

d = Distance between slits

From triangle (Watch image below)

[tex]tan\theta_1 = \frac{y_1}{L}[/tex]

[tex]tan\theta_1 = \frac{0.488}{1.64}[/tex]

[tex]\theta_1 = 16.57\°[/tex]

Replacing the angle at the first equation for m=1 we have

[tex]\lambda = d sin \theta_1[/tex]

Each of the distances (d) would be defined by

d = \frac{1}{5300} = 0.0001886

[tex]\lambda = (\frac{1}{5300}) sin(16.57)[/tex]

[tex]\lambda = 538nm[/tex]

Therefore the wavelength of the laser light is 538nm

A miniature spring-loaded, radio-controlled gun is mounted on an air puck. The gun's bullet has a mass of 7.00 g, and the gun and puck have a combined mass of 150 g. With the system initially at rest, the radio controlled trigger releases the bullet causing the puck and empty gun to move with a speed of 0.530 m/s. What is the bullet's speed?

Answers

Answer:

Explanation:

Given

mass of bullet [tex]m=7 gm[/tex]

mass of gun and Puck [tex]M=150 gm[/tex]

speed of gun and Puck is [tex]v=0.53 m/s[/tex]

Let speed of bullet be u

conserving Momentum

initial momentum=Final Momentum

[tex]0=Mv+mu[/tex]

[tex]u=-\frac{M}{m}v[/tex]

[tex]u=-\frac{150}{7}\times 0.53=-11.35 m/s[/tex]          

negative sign indicates that bullet is moving in opposite direction        

Final answer:

Using the law of conservation of momentum, it's possible to calculate that the bullet moves in the opposite direction of the gun and puck at a speed of approximately 113.6 m/s.

Explanation:

This question represents a practical example of the conservation of momentum. According to the law of conservation of momentum, the total momentum of an isolated system remains constant if no external forces act on it. As the system (gun and bullet) is initially at rest, the total momentum is zero, and it remains zero even after the bullet is fired.

Let's denote the bullet's velocity as v. The momentum of the bullet after firing is its mass times its velocity, or 0.007kg * v. The momentum of the gun and puck is their combined mass times their velocity, or 0.150kg * 0.530m/s. As the total momentum should remain zero, these two quantities must be equal and opposite. Thus, 0.007kg * v = - 0.150kg * 0.530m/s. Solving for v, we find that the bullet's speed is approximately -113.6 m/s. The negative sign indicates that the bullet moves in the opposite direction of the gun and puck.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ3

Choose the scenario under which each of the given Doppler shift effects will be seen.a. The source and observer are approaching one anotherb. The source and observer are moving away from one anotherc. The source and observer are stationary relative to one another

Answers

Answer:

scenario A and B

Explanation:

The Doppler effect is the change in frequency of a wave by the relative movement of the source and the observer. It is described by the expression

                 f ’= (v + v₀) / (v - [tex]v_{s}[/tex]) f₀

Where f₀ is the emitted frequency, v the speed of the wave, v₀ and [tex]v_{s}[/tex] the speed of the observer and the source, respectively, the signs are for when they are approaching and in the case of being away the signs are changed.

Consequently, from the above for the Doppler effect to exist there must be a relative movement of the source and the observer.

Let's examine the scenarios

A) True. You agree with the equation shown

B) True. Only the signs should be changed and it is described by the equation shown

C) False. If there is no relative movement there is no Doppler effect

An average nerve axon is about 4x10-6m in radius, and the axoplasm that composes the interior of the axon has a resistivity of about 2.3 Ω ⋅m.

What is the resistance of just 2-cm length of this axon?

Provide your answer in mega-ohms (1 mega-ohm = 106 ohms or "millions of ohms").

(Note, this value is so large -- it corresponds to the resistance of tens of thousands of miles of the thinnest copper wire normally manufactured(!) -- that it explains why a nerve pulse traveling down an axon CANNOT simply be a current traveling along the axon. The voltage required to achieve a perceptible current in the axon would have to be gigantic! We will investigate how voltage pulses -- not current -- travel down axons in a future lab.)

Answers

For the calculation of resistance there are generally two paths. The first is through Ohm's law and the second is through the relationship

[tex]R = \frac{pL}{A}[/tex]

Where

p = Specific resistance of material

L = Length

A = Area

The area of nerve axon is given as

[tex]A = \pi r^2[/tex]

[tex]A = \pi (5*10^{-6})^2[/tex]

[tex]A = 7.854*10^{-11}m^2[/tex]

The rest of values are given as

[tex]p= 2 \Omega\cdot m[/tex]

[tex]L = 2cm = 0.02m[/tex]

Therefore the resistance is

[tex]R = \frac{pL}{A}[/tex]

[tex]R = \frac{2*0.02}{7.854*10^{-11}}[/tex]

[tex]R = 509.3*10^6\Omega[/tex]

[tex]R = 509.3M\Omega[/tex]

A tube has a length of 0.025 m and a cross-sectional area of 6.5 x 10-4 m2. The tube is filled with a solution of sucrose in water. The diffusion constant of sucrose in water is 5.0 x 10-10 m2/s. A difference in concentration of 5.2 x 10-3 kg/m3 is maintained between the ends of the tube. How much time is required for 5.7 x 10-13 kg of sucrose to be transported through the tube?

Answers

Answer:

The time required for sucrose transportation through the tube is 8.4319 sec.

Explanation:

Given:

L = 0.025 m

A = 6.5×10^-4 m^2

D = 5×10^-10 m^2/s

ΔC = 5.2 x 10^-3 kg/m^3

m = 5.7×10^-13 kg

Solution:

t = m×L / D×A×ΔC

t = (5.7×10^-13) × (0.025) / (5×10^-10)×(6.5×10^-4)×(5.2 x 10^-3)

t = 8.4319 sec.

A peg is located a distance h directly below the point of attachment of the cord. If h = 0.760 L, what will be the speed of the ball when it reaches the top of its circular path about the peg?

Answers

Answer:

Explanation:

Given

Pivot is at h=0.76 L

Where L is the length of String

Conserving Energy at A and B

[tex]mgL=\frac{1}{2}mu^2[/tex]

where u=velocity at bottom

[tex]u=\sqrt{2gL}[/tex]

After coming at bottom the ball completes the circle with radius r=L-0.76 L

Suppose v is the velocity at the top

Conserving Energy at B and C

[tex]\frac{1}{2}mu^2=mg(2r)+\frac{1}{2}mv^2[/tex]

Eliminating m

[tex]u^2=4r+v^2[/tex]

[tex]v^2=u^2-4\cdot gr[/tex]

[tex]v^2=2gL-4g(L-0.76L)[/tex]

[tex]v^2=1.04gL[/tex]

[tex]v=\sqrt{1.04gL}[/tex]          

The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This spitting ability is enabled by the presence of a groove in the roof of the mouth of the archerfish. The groove forms a long, narrow tube when the fish places its tongue against it and propels drops of water along the tube by compressing its gill covers.When an archerfish is hunting, its body shape allows it to swim very close to the water surface and look upward without creating a disturbance. The fish can then bring the tip of its mouth close to the surface and shoot the drops of water at the insects resting on overhead vegetation or floating on the water surface.At what speed v should an archerfish spit the water to shoot down an insect floating on the water surface located at a distance 0.800 m from the fish? Assume that the fish is located very close to the surface of the pond and spits the water at an angle 60∘ above the water surface.

Answers

Answer:

Explanation:

Here is the full question and answer,

The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This spitting ability is enabled by the presence of a groove in the roof of the mouth of the archerfish. The groove forms a long, narrow tube when the fish places its tongue against it and propels drops of water along the tube by compressing its gill covers.

When an archerfish is hunting, its body shape allows it to swim very close to the water surface and look upward without creating a disturbance. The fish can then bring the tip of its mouth close to the surface and shoot the drops of water at the insects resting on overhead vegetation or floating on the water surface.

Part A: At what speed v should an archerfish spit the water to shoot down a floating insect located at a distance 0.800 m from the fish? Assume that the fish is located very close to the surface of the pond and spits the water at an angle 60 degrees above the water surface.

Part B: Now assume that the insect, instead of floating on the surface, is resting on a leaf above the water surface at a horizontal distance 0.600 m away from the fish. The archerfish successfully shoots down the resting insect by spitting water drops at the same angle 60 degrees above the surface and with the same initial speed v as before. At what height h above the surface was the insect?

Answer

A.) The path of a projectile is horizontal and symmetrical ground. The time is taken to reach maximum height, the total time that the particle is in flight will be double that amount.

Calculate the speed of the archer fish.

The time of the flight of spitted water is,

[tex]t = \frac{{2v\sin \theta }}{g}[/tex]

Substitute [tex]9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}[/tex] for g and [tex]60^\circ[/tex]  for [tex]\theta[/tex] in above equation.

[tex]t = \frac{{2v\sin 60^\circ }}{{9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}}}\\\\ = \left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\[/tex]  

Spitted water will travel [tex]0.80{\rm{ m}}[/tex] horizontally.

Displacement of water in this time period is

[tex]x = vt\cos \theta[/tex]

Substitute [tex]\left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}[/tex] for [tex]t\rm 60^\circ[tex] for [tex]\theta[/tex] and [tex]0.80{\rm{ m}}[/tex] for x in above equation.

[tex]\\0.80{\rm{ m}} = v\left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\left( {\cos 60^\circ } \right)\\\\0.80{\rm{ m}} = {v^2}\left( {0.1767{\rm{ }}} \right)\frac{1}{2}{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\\\v = \sqrt {\frac{{2\left( {0.80{\rm{ m}}} \right)}}{{0.1767\;{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}}}} \\\\ = 3.01{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\[/tex]

B.) There are two component of velocity vertical and horizontal. Calculate vertical velocity and horizontal velocity when the angle is given than calculate the time of flight when the horizontal distance is given. Value of the horizontal distance, angle and velocity are given. Use the kinematic equation to solve the height of insect above the surface.

Calculate the height of insect above the surface.

Vertical component of the velocity is,

[tex]{v_v} = v\sin \theta[/tex]

Substitute [tex]3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}[/tex] for v and [tex]60^\circ[/tex]  for [tex]\theta[/tex] in above equation.

[tex]\\{v_v} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\sin 60^\circ \\\\ = 2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\[/tex]

Horizontal component of the velocity is,

[tex]{v_h} = v\cos \theta[/tex]

Substitute [tex]3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}[/tex] for v and [tex]60^\circ[/tex]  for [tex]\theta[/tex] in above equation.

[tex]\\{v_h} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\cos 60^\circ \\\\ = 1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\[/tex]

When horizontal [tex]({0.60\;{\rm{m}}}[/tex] distance away from the fish.  

The time of flight for distance (d) is ,

[tex]t = \frac{d}{{{v_h}}}[/tex]

Substitute [tex]0.60\;{\rm{m}}[/tex] for d and [tex]1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}[/tex] for [tex]{v_h}[/tex] in equation [tex]t = \frac{d}{{{v_h}}}[/tex]

[tex]\\t = \frac{{0.60\;{\rm{m}}}}{{1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}}}\\\\ = 0.3987{\rm{ s}}\\[/tex]

Distance of the insect above the surface is,

[tex]s = {v_v}t + \frac{1}{2}g{t^2}[/tex]

Substitute [tex]2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}[/tex] for [tex]{v_v}[/tex] and [tex]0.3987{\rm{ s}}[/tex] for t and [tex]- 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}[/tex] for g in above equation.

[tex]\\s = \left( {2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\left( {0.3987{\rm{ s}}} \right) + \frac{1}{2}\left( { - 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}} \right){\left( {0.3987{\rm{ s}}} \right)^2}\\\\ = 0.260{\rm{ m}}\\[/tex]

You want to apply 18 N ⋅ m of torque to tighten a nut, using a wrench with a length of either 0.400 m, 0.600 m, or 0.900 m. For each wrench, determine the perpendicular force that you would have to apply to the end of the wrench in order to produce the desired torque.

Answers

Answer:

45 N, 30N ,20N

Explanation

torque = perpendicular force× distance

perpendicular force = torque/ distance

1) perpendicular force = 18/0.400 = 45 N

2)  perpendicular force = 18/0.600 = 30N

3) perpendicular force = 18/0.900 = 20N

We have that for the Question " the perpendicular force that you would have to apply to the end of the wrench in order to produce the desired torque" it can be said that

F=45NF=30NF=20N

From the question we are told

You want to apply 18 N ⋅ m of torque to tighten a nut, using a wrench with a length of either 0.400 m, 0.600 m, or 0.900 m. For each wrench, determine the perpendicular force that you would have to apply to the end of the wrench in order to produce the desired torque.

Generally the equation for the Force is mathematically given as

t=F*d

a)

[tex]t=F*d\\\\F=\frac{t}{d}\\\\F=\frac{18}{0.4}\\\\[/tex]

F=45N

b)

[tex]t=F*d\\\\F=\frac{t}{d}\\\\\F=\frac{18}{0.6}\\\\[/tex]

F=30N

c)

[tex]t=F*d\\\\F=\frac{t}{d}\\\\F=\frac{18}{0.6}\\\\[/tex]

F=20N

For more information on this visit

https://brainly.com/question/23379286

The 8 kg block is then released and accelerates to the right, toward the 2 kg block. The surface is rough and the coefficient of friction between each block and the surface is 0.4 . The two blocks collide, stick together, and move to the right. Remember that the spring is not attached to the 8 kg block. Find the speed of the 8 kg block just before it collides with the 2 kg block. Answer in units of m/s.

Answers

Answer:

3.258 m/s

Explanation:

k = Spring constant = 263 N/m (Assumed, as it is not given)

x = Displacement of spring = 0.7 m (Assumed, as it is not given)

[tex]\mu[/tex] = Coefficient of friction = 0.4

Energy stored in spring is given by

[tex]U=\dfrac{1}{2}kx^2\\\Rightarrow U=\dfrac{1}{2}\times 263\times 0.7^2\\\Rightarrow U=64.435\ J[/tex]

As the energy in the system is conserved we have

[tex]\dfrac{1}{2}mv^2=U-\mu mgx\\\Rightarrow v=\sqrt{2\dfrac{U-\mu mgx}{m}}\\\Rightarrow v=\sqrt{2\dfrac{64.435-0.4\times 8\times 9.81\times 0.7}{8}}\\\Rightarrow v=3.258\ m/s[/tex]

The speed of the 8 kg block just before collision is 3.258 m/s

Final answer:

The speed of the 8 kg block before the collision is found by considering the work done by friction and the initial potential energy in the spring and using the conservation of energy principle to solve for the speed.

Explanation:

To find the speed of the 8 kg block just before it collides with the 2 kg block, we must calculate the motion of the block under the influence of friction before the collision occurs.

First, we determine the force of friction using the coefficient of friction (μ) and the normal force (N), which in this case equals the weight of the block (m × g) since the surface is horizontal. So, the force of friction is given by Fₙ = μ × m × g = 0.4 × 8 kg × 9.8 m/s² = 31.36 N.

Since there is friction, work done by friction must be considered to find the velocity. The work done by friction (Wₙ) is the force of friction (Fₙ) multiplied by the distance the block moves before colliding with the second block (d), which is not given in this problem. But if we had the distance, we could use the work-energy principle, where the net work done on an object is equal to the change in its kinetic energy (KE).

Assuming no other forces act on the block, then the work done by friction is equal to the initial potential energy stored in the spring. Using Hooke's Law, the potential energy (PE) in the spring is given by PE = ½ kx², where k is the spring constant and x is the compression distance. This energy gets converted entirely into the kinetic energy of the 8 kg block minus the losses due to friction.

Using the conservation of energy:

PE - Wₙ = ½ m v²

½ kx² - Fₙ × d = ½ m v²

We solve this equation for v, the speed of the block, if we know the distance (d).

An ideal gas goes through the following two-step process. 1) The container holding the gas has a fixed volume of 0.200 m3 while the pressure of the gas increases from 3.00×105 Pa to 4.00×105 Pa . 2) The container holding the gas is then compressed to a volume of 0.120 m3 while maintaining a constant pressure of 4.00×105 Pa .A) What is the total work done by the gas for this two-step process?

Answers

Answer:

[tex]W=-3.2\times 10^4\ J[/tex]

Explanation:

Given:

Process 1:

Volume of ideal gas is constant, [tex]V_1_i=0.2\ m^3[/tex]Initial pressure, [tex]P_1_i=3\times 10^5\ Pa[/tex]Final pressure, [tex]P_1_f=4\times 10^5\ Pa[/tex]

Process 2:

Pressure of ideal gas is constant, [tex]P_2_f=4\times 10^5\ Pa[/tex]Final volume, [tex]V_2_f=0.12\ m^3[/tex]

We know that the work done by an ideal gas is given as:

[tex]W=P\times (V_f-V_i)[/tex]

Now for process 1:

[tex]W_1=0\ J[/tex]

∵there is no change in volume in this process.

For process 2:

[tex]W_2=4\times 10^5\time (0.12-0.2)\ J[/tex]

[tex]W_2=-3.2\times 10^4\ J[/tex]

∵Negative , sign indicates that the work is being done on the gas here since the gas is being compressed.

Hence the total work done by the gas during this two step process is :

[tex]W=W_1+W_2[/tex]

[tex]W=0-3.2\times 10^4[/tex]

[tex]W=-3.2\times 10^4\ J[/tex] is the work done by the gas.

A 2.0 kg block is held at rest against a spring with a force constant k = 264 N/m. The spring is compressed a certain distance and then the block is released. When the block is released, it slides across a surface that has no friction except for a 10.0 cm section that has a coefficient of friction μk = 0.54.

Find the distance in centimeters the spring was compressed such that the block's speed after crossing the rough area is 2.7 m/s.

Answers

Answer:

21.73 cm

Explanation:

We have given parameters:

Mass of block, m = 2.0 kg

Force constant of spring, k = 264 N/m

Length of rough area,  L  = 10 cm = 0.1 m

Co-efficient of kinetic friction , [tex]\mu_{k}[/tex] = 0.54

Block's speed after crossing rough area, v = 2.7 m/s

Block's initial speed ( when it was released from compressed spring), [tex]v_{0}[/tex] = 0 m/s

We need to find the distance that the spring was initially compressed, x = ?

Hence, we well apply Work-Energy principle which indicates that,

Work done by the friction = Change in the total energy of block

[tex]- \mu_{k} * mg * L = (\frac{1}{2} * mv^{2} - \frac{1}{2} * mv_{0} ^{2} ) + (0 - \frac{1}{2} * kx^{2})[/tex]

-0.54 * 2 * 9.8 * 0.1 = (1/2 * 2 * [tex]2.7^{2}[/tex] - 1/2 * 2 * 0) + (0 - 1/2 * 264 * [tex]x^{2}[/tex])

x = 0.2173 m = 21.73 cm

Which is true about the self-induced emf of an inductor?

It is a fixed value, depending on only the geometry of the device.

It depends on the amount of current through the inductor.

It depends on the rate of dissipation.

It depends on the rate at which the current through it is changing.

Answers

Answer:

It depends on the rate at which the current through it is changing.          

Explanation:

As per the Faraday's law, the induced emf is given by :

[tex]\epsilon=-L\dfrac{di}{dt}[/tex]

Where

L is the inductance of the inductor

[tex]\dfrac{di}{dt}[/tex] is the rate of change of current

So, the self-induced emf of an inductor depends on the rate at which the current through it is changing. Hence, the correct option is (d).

The second law of thermodynamics states that spontaneous processestend to be accompanied by entropy increase. Consider, however, thefollowing spontaneous processes:
the growth of plants from simple seeds to well-organizedsystems
the growth of a fertilized egg from a single cell to a complexadult organism
the formation of snowflakes from molecules of liquid water withrandom motion to a highly ordered crystal
the growth of organized knowledge over time
In all these cases, systems evolve to a state of less disorder andlower entropy, apparently violating the second law ofthermodynamics. Could we, then, consider them as processesoccurring in systems that are not isolated?

True or False?

Answers

Answer:

True

Explanation:

According to the definition of a closed system, It is true because it's not precisely a closed system. A closed system is a physical system that doesn't let certain types of transfers (such as transfer of mass in or out of the system), though the transfer of energy is allowed.

You are lowering two boxes, one on top of the other, down a ramp by pulling on a rope parallel to the surface of the ramp. Both boxes move together at a constant speed of 15.0 cm/s. The coefficient of kinetic friction between the ramp and the lower box is 0.444, and the coefficient of static friction between the two boxes is 0.800.


(a) What force do you need to exert to accomplish this? (b) What are the magnitude and direc- tion of the friction force on the upper box?

Answers

Answer:

(a) 57.17 N

(b) 146.21 N up the ramp

Explanation:

Assume the figure attached

(a)

The angle of ramp, [tex]\theta=tan ^{-1} \frac {2.5}{4.75}=27.75854^{\circ}\approx 27.76^{\circ}[/tex]

[tex]N=(32+48)*9.81*cos 27.76^{\circ}=694.4838 N[/tex]

m=32+48=80 kg

[tex]T+ \mu N= mg sin \theta[/tex]

[tex]T=mg sin \theta - \mu N= mg sin \theta- \mu mg cos \theta= mg (sin \theta - \mu cos \theta) [/tex] where [tex]\mu[/tex] is coefficient of kinetic friction

[tex]T=80*9.81(sin 27.76^{\circ} -0.444 cos 27.76^{\circ})=57.16698 N \approx 57.17 N[/tex]

(b)

Upper box doesn’t accelerate

[tex]F_r= mgsin\theta= 32*9.81sin 27.76^{\circ}=146.2071\approx 146.21 N[/tex]  

The direction will be up the ramp

Final answer:

To lower the boxes down the ramp, a force is needed that is equal to the force of kinetic friction on the lower box. The magnitude and direction of the friction force on the upper box is the same as the force of kinetic friction on the lower box.

Explanation:

To determine the force required to lower the two boxes down the ramp, we can use the equation: force = friction force + weight force. Since the boxes are moving at a constant speed, the force of kinetic friction on the lower box is equal to the force applied to it. Therefore, the force needed to lower the boxes is equal to the force of kinetic friction on the lower box which can be calculated using the equation: force = coefficient of kinetic friction × normal force.

For the magnitude and direction of the friction force on the upper box, we can use the equation: friction force = coefficient of static friction × normal force. Since the boxes are moving together, we can assume that the friction force on the upper box is equal to the force of kinetic friction on the lower box. Therefore, the magnitude and direction of the friction force on the upper box is the same as the force of kinetic friction on the lower box.

Learn more about force of friction here:

https://brainly.com/question/30280752

#SPJ3

You look towards a traffic light and see a yellow light. If you were to drive towards it at near the speed of light, what color would it appear?

A. Red
B. Green

Answers

Answer:

B. Green

Explanation:

The change in wavelength that is caused when one object is moving towards another object from the perspective of the viewer is called the Doppler effect.

When objects move close to one another then wavelength reduces which is called blue shift while the opposite case causes the wavelength to increase which is called red shift.

Here, the color of the traffic light is yellow and you are getting closer to it so the wavelength should blue shift and green should appear.

A skater has rotational inertia 4.2 kg.m2 with his fists held to his chest and 5.7 kg.m2 with his arms outstretched. The skater is spinning at 3.0 rev/s while holding a 2.5-kg weight in each outstretched hand; the weights are 76 cm from his rotation axis. If he pulls his hands in to his chest, so they’re essentially on his ro- tation axis, how fast will he be spinning?

Answers

Answer:

6.13428 rev/s

Explanation:

[tex]I_f[/tex] = Final moment of inertia = 4.2 kgm²

I = Moment of inertia with fists close to chest = 5.7 kgm²

[tex]\omega_i[/tex] = Initial angular speed = 3 rev/s

[tex]\omega_f[/tex] = Final angular speed

r = Radius = 76 cm

m = Mass = 2.5 kg

Moment of inertia of the skater is given by

[tex]I_i=I+2mr^2[/tex]

In this system the angular momentum is conserved

[tex]L_f=L_i\\\Rightarrow I_f\omega_f=I_i\omega_i\\\Rightarrow \omega_f=\dfrac{I_i\omega_i}{I_f}\\\Rightarrow \omega_f=\dfrac{(5.7+2\times 2.5\times 0.76^2)3}{4.2}\\\Rightarrow \omega_f=6.13428\ rev/s[/tex]

The rotational speed will be 6.13428 rev/s

Final answer:

To solve this problem, we need to use the principle of conservation of angular momentum. The skater will be spinning at approximately 8.0 rev/s when his hands are brought to his chest.

Explanation:

To solve this problem, we need to use the principle of conservation of angular momentum. According to this principle, the initial angular momentum of the skater with his arms extended is equal to the final angular momentum when his hands are brought to his chest.

The initial angular momentum is given by the equation:

Li = Iiωi

where Li is the initial angular momentum, Ii is the initial moment of inertia, and ωi is the initial angular velocity. The final angular momentum is given by:

Lf = Ifωf

where Lf is the final angular momentum, If is the final moment of inertia, and ωf is the final angular velocity.

Since the skater is pulling his hands in to his chest, his moment of inertia decreases, and his angular velocity increases. We can set up the following equation:

Iiωi = Ifωf

Substituting the given values, we have:

(5.7 kg.m2)(2π(3.0 rev/s)) = (4.2 kg.m2)ωf

Solving for ωf, we find that the skater will be spinning at approximately 8.0 rev/s when his hands are brought to his chest.

As a comet approaches the Sun, it arcs around the Sun more rapidly. Why?

Answers

Answer:

Explanation:

According to Kepler's law a radius vector joining planet and sun swept equal area in equal interval of time thus it can be applied for comets.

when a comet is nearer  to sun it has to swept more area so its velocity is more nearer to the sun ,

The basics of this formula comes from conservation of angular momentum  thus comet moves faster when it approaches the sun.

A titanium (c = 520 J/kg*K) satellite of mass m = 500 kg at a temperature of 10 K is in geostationary orbit above the equator. It is impacted by a meteorite, which knocks it off course but does not affect its speed. Because of the change in trajectory, the satellite will now crash-land on Earth in a small pond containing 5 × 10^5 kg of water (c = 4186 J/kg*K) at 20°C. Ignoring air resistance, and assuming that the water stays in the pond somehow, what is the final temperature of the water? Please indicate if any water boils, and justify any simplifying assumptions you make in your solution.

Answers

D) all of the above
D all of the above!!!!!!!

A gas in a cylinder is held at a constant pressure of 1.80 * 105 Pa and is cooled and compressed from 1.70 m3 to 1.20 m3 . The internal energy of the gas decreases by 1.40 * 105 J.
(a) Find the work done by the gas.
(b) Find the absolute value |Q| of the heat flow into or out of the gas, and state the direction of the heat flow.
(c) Does it matter whether the gas is ideal? Why or why not

Answers

This question is wrong because of not correct values.The Correct question is

A gas in a cylinder is held at a constant pressure of 1.80×10⁵Pa and is cooled and compressed from 1.70m³ to 1.20m³. The internal energy of the gas decreases by 1.40×10⁵J.

(a) Find the work done by the gas.

(b) Find the absolute value of the heat flow, |Q|, into or out of the gas, and state the direction of the heat flow.

(c) Does it matter whether the gas is ideal? Why or why not?

Answer:

(a) W= -9×10⁴J

(b) |Q|=2.3×10⁵

(c) It does not matter whether gas is ideal or non-ideal

Explanation:

Given

V₁=1.70m³

V₂=1.20m³

p=1.8×10⁵ pa

ΔU= -1.40×10⁵J

For (a) work done by gas

[tex]W=p(V_{2}-V_{1} )\\W=1.8*10^{5}(1.2-1.7)\\ W=-9*10^{4}J[/tex]

For (b) Heat flow |Q|

|Q|=ΔU+W

[tex]Q=(-1.4*10^{5}) +(-9*10^{4})\\Q=-2.3*10^{5}J\\So\\|Q|=|-2.3*10^{5}|\\|Q|=2.3*10^{5}J[/tex]

For (c) part

It does not matter whether the gas is ideal or not because the first law of thermodynamics which applied in our solution could applied to any material ideal or non ideal  

Bandar Industries Berhad of Malaysia manufactures sporting equipment. One of the company’s products, a football helmet for the North American market, requires a special plastic. During the quarter ending June 30, the company manufactured 3,200 helmets, using 2,368 kilograms of plastic. The plastic cost the company $15,629. According to the standard cost card, each helmet should require 0.68 kilograms of plastic, at a cost of $7.00 per kilogram. Required: 1. What is the standard quantity of kilograms of plastic (SQ) that is allowed to make 3,200 helmets? 2. What is the standard materials cost allowed (SQ × SP) to make 3,200 helmets? 3. What is the materials spending variance? 4. What is the materials price variance and the materials quantity variance? (For requirements 3 and 4, indicate the effect of each variance by selecting "F" for favorable, "U" for unfavorable, and "None" for no effect (i.e., zero variance). Input all amounts as positive values. Do not round intermediate calculations.)

Answers

Answer:

1.  2176 kilograms of plastic  2. $15,232  3. $397 (U)     4. $947 (F)   $1,344  (U)

Explanation:

Generally, cost variance analysis can be used to estimate the difference between the actual cost and the expected costs. However, if the actual cost is more than the expected cost, then the variance is said to be unfavorable and vice versa.

1. The standard quantity of kilograms of plastic (SQ) that is allowed to make 3,200 helmets?

We know that each helmet requires 0.68 kilograms of plastic. Thus, to make 3200 helmets, we will need 0.68*3200 = 2176 kilograms of plastic

2. The standard materials cost allowed (SQ × SP) to make 3,200 helmets.

We also know that each helmet costs $7.00 per kilogram. Therefore, to make 3200 helmets, the standard materials cost = $7.00*2176 = $15,232

3. The material spending variance = difference between the actual cost and the standard cost = $15,629 - $15,232 = $397  U

4.  The materials price variance and the materials quantity variance?

The materials price variance  is the actual cost- (standard cost per kilogram x actual number of plastic used) . Therefore:

Materials price variance = $15,629 - ($7 x 2,368 kg)

Materials price variance = $15,629 - $16,576 = ($947) F

Since the budgeted cost is relatively higher than the actual cost, the materials price variance is favorable (F) by $947.

The materials quantity variance = (Actual number of plastic used x Standard cost per kilogram) - Standard cost

Materials quantity variance = ($7 x 2,368 kg) - $15,232

Materials quantity variance = $16,576 - $15,232 = $1,344  U

Since the budgeted cost is relatively higher than the standard cost, the materials quantity variance is unfavorable (U) by $1,344.

Final answer:

To find the standard quantity of plastic and standard materials cost allowed, multiply the standard quantity per helmet by the number of helmets produced and multiply the standard quantity by the standard price per kilogram, respectively. The materials spending variance is the difference between the actual cost and the standard cost that should have been incurred. The materials price variance is the difference between the actual quantity of plastic used multiplied by the standard price per kilogram and the actual cost, while the materials quantity variance is the difference between the standard quantity of plastic allowed multiplied by the standard price per kilogram and the actual cost.

Explanation:

To calculate the standard quantity of plastic (SQ) allowed to make 3,200 helmets, multiply the standard quantity per helmet by the number of helmets produced. In this case, SQ = 0.68 kg/helmet * 3,200 helmets = 2,176 kg. To calculate the standard materials cost allowed (SQ × SP), multiply the standard quantity by the standard price per kilogram. In this case, the materials cost allowed is $15,232 (2,176 kg * $7.00/kg).

To calculate the materials spending variance, subtract the actual cost from the standard cost that should have been incurred. In this case, the materials spending variance is $397 (Standard Cost - Actual Cost = $15,232 - $15,629). The materials price variance is calculated by subtracting the actual quantity of plastic used multiplied by the standard price per kilogram from the actual cost.

The materials quantity variance is calculated by subtracting the standard quantity of plastic allowed multiplied by the standard price per kilogram from the actual cost. In this case, the materials price variance is $7,774 (Actual Cost - Actual Quantity * Standard Price = $15,629 - 2,368 kg * $7.00/kg) and the materials quantity variance is -$2,145 (Actual Quantity * Standard Price - Standard Cost = 2,368 kg * $7.00/kg - $15,232).

Learn more about materials here:

https://brainly.com/question/34935424

#SPJ3

A Machine part is undergoing SHM with a frequency of 5.00 Hz and amplitude 1.80 CM, how long does it take the part to go from x=0 to x=-1.80 cm?

Answers

Final answer:

It takes 0.05 seconds for a part undergoing simple harmonic motion with a frequency of 5.00 Hz to move from x=0 to x=-1.80 cm.

Explanation:

The student is asking how long it takes for a machine part undergoing simple harmonic motion (SHM) with a frequency of 5.00 Hz and amplitude of 1.80 cm to move from its equilibrium position (x=0) to its maximum negative displacement (x=-1.80 cm).

In SHM, the period (T) is the time required for one complete cycle of the motion. The period can be calculated using the formula T = 1/f, where f is the frequency. For a frequency of 5.00 Hz, the period is T = 1/5.00 Hz = 0.20 s. In half of a period, the part moves from one extreme to the other, passing through the equilibrium position at the quarter-period. Thus, to go from x=0 to x=-1.80 cm, it takes a quarter of this period, or (1/4)T = 0.05 s.

Therefore, it takes 0.05 seconds for the part to travel from x=0 to x=-1.80 cm while undergoing SHM.

Learn more about Simple Harmonic Motion here:

https://brainly.com/question/28208332

#SPJ2

You set out to reproduce Thomson’s e/m experiment with an accelerating potential of 150 V and adeflecting electric field of magnitude 6.0 ×106 N/C(a) At what fraction of the speed of light do the electrons move?(b) What magnetic-field magnitude will yield zero beam deflection?(c) With this magnetic field, how will the electron beam behave if you increase the acceleratingpotential above 150 V?

Answers

Answer:

a. v' = 24.22 x 10 ⁻³

b. β = 0.825 T

Explanation:

V = 150 V , E = 6.0 x 10 ⁶ N / C

a.

¹/₂ * m * v² = e * V

v = √ 2 * e / m * V

v = √ 2 * 1.76 x 10 ¹¹ * 150 v  = √ 5.28 x 10 ¹³

v = 7.26 x 10 ⁶ m /s

v' / c = 7.26 x 10 ⁶ m /s  / 3.0 x 10 ⁸ = 24.22 x 10 ⁻³

b.  

β = E / V

β = 6.0 x 10 ⁶ / 7.266 x 10 ⁶

β = 0.825 T

c.

When the increasing the accelerating potential speed it doesn't change the up wired the electric force and the magnetic force the electron be beat down more .

Other Questions
Write the equation of the line that passes through (4, -8) and is parallel to the line y = -2x - 13. Perth Mining Company operates two mines for the purpose of extracting gold and silver. The Saddle Mine costs $12,000/day to operate, and it yields 50 oz of gold and 3000 oz of silver each of x day. The Horseshoe Mine costs $17,000/day to operate, and it yields 75 oz of gold and 1000 oz of silver each of y day. Company management has set a target of at least 650 oz of gold and 18,000 oz of silver. How many days should each mine be operated so that the target can be met at a minimum cost? When you throw a ball up in the air, it travels up and then stops instantaneously before falling back down. At the point where it stops and changes directions to fall back down is Read the sentence. While we could never prove it, we suspected him of duplicity, so we were never able to fully trust him despite his numerous good deeds. What is the most likely definition of "duplicity"? Which reputed Roman philosopher wrote Naturalis Historia?A. PtolemyB. GalenC.Pliny the ElderD.Euclid A speech topic that presents an issue that needs resolving can effectively be organized as: According to the Normal model ?N(0.054?,0.015?) describing mutual fund returns in the 1st quarter of? 2013, determine what percentage of this group of funds you would expect to have the following returns. Complete parts? (a) through? (d) below. ?a) Over? 6.8%? ?b) Between? 0% and? 7.6%? ?c) More than? 1%? ?d) Less than? 0%?A) The expected percentage of returns that are over 6.8% is ______%b) The expected percentage of returns that are between 0& and 7.6% is ____%C) The expected percentage of returns that are more than 1% is ____%D) The expected percentage of returns that are less than 0% is ____%Type an intenger or a decimal rounded to one decimal place as needed. What does Hamlet call Polonius after Polonius asks him, "Do you know me, my lord"? Changes in two hormones, _____ and estradiol, lie at the core of development in puberty. To reduce the risk of neural tube birth defects in infants, the mother-to-be should consume adequate amounts of __________ prior to conception. What is the name of the process whereby a platform with many wells is secured to the ocean floor? A. offshore drillingB. secondary recoveryC. underground miningD. geothermal extraction A subtype of implicit memory involves , which is the automatic learning of associations between stimuli. For example, a person who always gets bad news in work meetings may come to associate work meetings with anxiety. True or false? The testing effect refers to: Question 19 options: 1) losing the majority of the information you learned for the test immediately after the test 2) repeated self-testing as a way to enhance retention of information 3) writing a test in the same state that you studied the material should enhance retention 4) the emotional letdown people often experience after writing a test. Super Carpeting Inc. (SCI) just paid a dividend (D) of $2.40 per share, and its annual dividend is expected to grow at a constant rate (g) of 5.00% per year. If the required return (r s ) on SCIs stock is 12.50%, then the intrinsic value of SCIs shares is per share. Which of the following statements is true about the constant growth model? The constant growth model can be used if a stocks expected constant growth rate is more than its required return. The constant growth model can be used if a stocks expected constant growth rate is less than its required return. Use the constant growth model to calculate the appropriate values to complete the following statements about Super Carpeting Inc.: If SCIs stock is in equilibrium, the current expected dividend yield on the stock will be per share. SCIs expected stock price one year from today will be per share. If SCIs stock is in equilibrium, the current expected capital gains yield on SCIs stock will be per share. At the start of the month, Suzanne's clothing store website had 7,278 hits. At the end of the month, it had 50,165 hits. If each hit lasted 1.5 minutes, then what was the approximate total number of minutes on the website for this month? A. 64,500 B. 43,651 C. 21,955 D. 102,200 what is the rising action in chapter 6 0f the call of the wild What is the effect of the new technology on the production of carpet? (Give the number of yards before and after the change.) What point located in quadrant I has an x-value that is 2 units from the origin and a y-value 7 units from the origin? Jenna is searching for a job that suits her tastes about where to live. Mary is looking for a job that makes best use of her skills. a. Jenna and Mary are both frictionally unemployed. b. Jenna and Mary are both structurally unemployed. c. Jenna is frictionally unemployed, and Mary is structurally unemployed. d. Jenna is structurally unemployed, and Mary is frictionally unemployed. Which of these statements is true?A. Chemical energy is a form of potential energy.B. Chemical energy is a form of nuclear energy.C. Chemical energy is associated with moving electrons.D. Chemical energy is associated with molecular motion. Steam Workshop Downloader