The parent function f(x) = 1.5x is translated such that the function g(x) = 1.5x + 1 + 2 represents the new function. Which is the graph of g(x)? On a coordinate plane, an exponential function increases from quadrant 2 to quadrant 1. It crosses the y -axis at (0, 2.5). On a coordinate plane, an exponential function increases from quadrant 3, through quadrant 4, to quadrant 1. It crosses the y-axis at (0, negative 0.5). On a coordinate plane, an exponential function increases from quadrant 3, through quadrant 4, to quadrant 1. It crosses the y-axis at (0, negative 1.5). On a coordinate plane, an exponential function increases from quadrant 2 to quadrant 1. It crosses the y -axis at (0, 3.5).

Answers

Answer 1

Answer:

Its the fourth graph

Step-by-step explanation:

i got it right

Answer 2

Answer: the 4th one

Step-by-step explanation:

i just did this

The Parent Function F(x) = 1.5x Is Translated Such That The Function G(x) = 1.5x + 1 + 2 Represents The

Related Questions

How can you use a rational exponent to
represent a power involving a radical?

Answers

Answer:

  [tex]\sqrt[n]{x^m}=x^{\frac{m}{n}}[/tex]

Step-by-step explanation:

A radical represents a fractional power. For example, ...

  [tex]\sqrt{x}=x^{\frac{1}{2}}[/tex]

This makes sense in view of the rules of exponents for multiplication.

  [tex]a^ba^c=a^{b+c}\\\\a^{\frac{1}{2}}a^{\frac{1}{2}}=a^{\frac{1}{2}+\frac{1}{2}}=a\\\\(\sqrt{a})(\sqrt{a})=a[/tex]

So, a root other than a square root can be similarly represented by a fractional exponent.

____

The power of a radical and the radical of a power are the same thing. That is, it doesn't matter whether the power is outside or inside the radical.

  [tex]\sqrt[n]{x^m}=x^{\frac{m}{n}}=(\sqrt[n]{x})^m[/tex]

From a boat on the lake, the angle of elevation to the top of a cliff is 24 degrees 19'. If the base of the cliff is 2994 feet from the boat, how high is the cliff (to the nearest foot)?

Answers

Answer:

  1353 ft

Step-by-step explanation:

The cliff height and the distance from its base to the boat form the legs of a right triangle. The cliff height is the leg opposite the elevation angle, and the distance to the boat is the leg adjacent. Given these two legs of the triangle, the tangent relation seems useful:

  Tan = Opposite/Adjacent

We want to find the cliff height (opposite), so we can multiply this equation by Adjacent:

  Opposite = Adjacent×Tan

  cliff height = (2994 ft)(tan(24°19')) ≈ 1353 ft

The cliff is about 1353 feet high.

brainliest.
The set {5, 6, 8, 9, 10} is part of a solution set for which inequality?
A. c+14<24

B. c+18≥24

C. c+18>24

D. c+14≤24
please help

Answers

Answer:

D. c+14≤24

Step-by-step explanation:

A. c+14<24 is c<10 (subtract 14)

B. c+18≥24 is c≥6 (subtract 18)

C. c+18>24 is c>6 (subtract 18)

D. c+14≤24 is c≤10 (subtract 14)

The set is {5, 6, 8, 9, 10}, so it should include each one of those numbers. C and A don't include 6 and 10 respectively, so they can't be the answer. B contains all numbers 6 and above, which doesn't include 5. The remaining letter is D, so that's the final answer.

An estimated regression equation was developed relating the percentage of games won by a team in the National Football League for the 2011 season given the average number of passing yards obtained per game on offense and the average number of yards given up per game on defense (ESPN website, November 3, 2012). a. Predict the percentage of games won for a particular team that averages 225 passing yards per game on offense and gives up an average of 300 yards per game on defense. b. Develop a 95% prediction interval for the percentage of games won for a particular team that averages 225 passing yards per game on offense and gives up an average of 300 yards per game on defense.

Answers

The predicted percentage of games won for a team with these statistics is approximately 60.025%.

To address the given questions, we'll use the provided estimated regression equation:

[tex]\[ \hat{y} = 60.5 + 0.319x_1 - 0.241x_2 \][/tex]

where:

- [tex]\( \hat{y} \)[/tex] is the predicted percentage of games won,

- [tex]\( x_1 \)[/tex] is the average number of passing yards obtained per game on offense,

- [tex]\( x_2 \)[/tex] is the average number of yards given up per game on defense.

a. To predict the percentage of games won for a team that averages 225 passing yards per game on offense [tex](\( x_1 = 225 \))[/tex] and gives up an average of 300 yards per game on defense [tex](\( x_2 = 300 \))[/tex], we'll substitute these values into the regression equation:

[tex]\[ \hat{y} = 60.5 + 0.319(225) - 0.241(300) \][/tex]

[tex]\[ \hat{y} = 60.5 + 71.775 - 72.3 \][/tex]

[tex]\[ \hat{y} = 60.5 - 0.525 \][/tex]

[tex]\[ \hat{y} = 60.025 \][/tex]

Therefore, the predicted percentage of games won for a team with these statistics is approximately 60.025%.

Complete question:

In exercise 24, an estimated regression equation was developed relating the percentage of games won by a team in the National Football League for the 2011 season (y) given the average number of passing yards obtained per game on offense (x1) and the average number of yards given up per game on defense (x2). The estimated regression equation was y = 60.5 + 0.319x1 - 0.241x2.

Predict the percentage of games won for a particular team that averages 225 passing yards per game on offense and gives up an average of 300 yards per game on defense.

Calculate the divergence of the following radial field. Express the result in terms of the position vector r and its length StartAbsoluteValue Bold r EndAbsoluteValue. FequalsStartFraction left angle x comma y comma z right angle Over x squared plus y squared plus z squared EndFraction equalsStartFraction Bold r Over StartAbsoluteValue Bold r EndAbsoluteValue squared EndFraction Choose the correct answer below. A. The divergence of F is 0. B. The divergence of F is StartFraction negative 2 Over StartAbsoluteValue Bold r EndAbsoluteValue Superscript 4 EndFraction . C. The divergence of F is StartFraction 1 Over StartAbsoluteValue Bold r EndAbsoluteValue squared EndFraction . D. The divergence of F is StartFraction negative 1 Over StartAbsoluteValue Bold r EndAbsoluteValue squared EndFraction

Answers

Answer:

C. The divergence of F is StartFraction 1 Over StartAbsoluteValue Bold r EndAbsoluteValue squared EndFraction

∇•F = 1/|r|²

Step-by-step explanation:

The position vector r = (x, y, z)

r = xi+yj+zk

|r| = √x²+y²+z²

|r|² = x²+y²+z²

Given the radial field F = r/|r|²

Divergence of the radial field is expressed as:

∇•F = {δ/δx i+ δ/δy j + δ/δy k} • {(r/|r|²)

∇•F = {δ/δx i+ δ/δy j + δ/δy k} • {xi/|r|² + yj/|r|² + zk/|r|²}

∇•F = δ/δx(x/|r|²) + δ/δy(y/|r|²)+δ/δz(z/|r|²)

Check the attachment for the complete solution.

A sphere has a diameter of 30 meters. What is the volume of the sphere.

Answers

Answer:

V≈14,137.17m³ or 4500π

Step-by-step explanation:

Formula: V=(1 /6)πd³

V=(1/6)π(30³)= 14137.16694115406957308189522475776297888726229718797619438.....

Answer:

14137.17 meters cubed

Step-by-step explanation:

volume = 14137.17 meters cubed

A recipe for a loaf of bread calls for of a cup of flour. If Milo used 12 cups of flour, how many loaves of bread did he prepare?
A.
18
B.
16
C.
15
D.
12
E.
8

Answers

Answer: The answer is D 12 i am pretty sure.

Step-by-step explanation:

Answer:

D

Step-by-step explanation:

In a previous​ year, 58​% of females aged 15 and older lived alone. A sociologist tests whether this percentage is different today by conducting a random sample of 600 females aged 15 and older and finds that 339 are living alone. Is there sufficient evidence at the alphaequals0.01 level of significance to conclude the proportion has​ changed?

Answers

Answer:

[tex]z=\frac{0.565 -0.58}{\sqrt{\frac{0.58(1-0.58)}{600}}}=-0.744[/tex]  

Since is a bilateral test the p value would be given by:  

[tex]p_v =2*P(z<-0.744)=0.4569[/tex]  

And since the p value is higher than the significance level we have enough evidence to conclude that the true proportion is not significantly different from 0.58

Step-by-step explanation:

Information given

n=600 represent the random sample selcted

X=339 represent the number of females aged 15 and older that living alone

[tex]\hat p=\frac{339}{600}=0.565[/tex] estimated proportion of females aged 15 and older that living alone

[tex]p_o=0.58[/tex] is the value that we want to check

[tex]\alpha=0.01[/tex] represent the significance level

z would represent the statistic

[tex]p_[/tex] represent the p value

Sytem of hypothesis

We want to check if the true proportion females aged 15 and older that living alone is significantly different from 0.58.:  

Null hypothesis:[tex]p=0.58[/tex]  

Alternative hypothesis:[tex]p \neq 0.58[/tex]  

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing the info given we got:

[tex]z=\frac{0.565 -0.58}{\sqrt{\frac{0.58(1-0.58)}{600}}}=-0.744[/tex]  

Since is a bilateral test the p value would be given by:  

[tex]p_v =2*P(z<-0.744)=0.4569[/tex]  

And since the p value is higher than the significance level we have enough evidence to conclude that the true proportion is not significantly different from 0.58

A bag contains eleven equally sized marbles, which are numbered. Two marbles are chosen at random and replaced after each selection.

Eleven numbered marbles are shown. Marbles 2, 5, 6, 7, 8, 10, 11 are white. Marbles 1, 3, 4, 9 are purple.

What is the probability that the first marble chosen is shaded and the second marble chosen is labeled with an odd number?

StartFraction 10 Over 121 EndFraction
StartFraction 24 Over 121 EndFraction
StartFraction 6 Over 11 EndFraction
StartFraction 10 Over 11 EndFraction

Answers

EndFraction

StartFraction 24 Over 121 EndFraction

StartFraction 6 Over 11 EndFraction

StartFraction 10 Over 11 EndFraction

Answer:

StartFraction 24 Over 121 EndFraction

Step-by-step explanation:

A normal deck of cards has 52 cards, consisting of 13 each of four suits: spades, hearts, diamonds, and clubs. Hearts and diamonds are red, while spades and clubs are black. Each suit has an ace, nine cards numbered 2 through 10, and three face cards. The face cards are a jack, a queen, and a king. Answer the following questions for a single card drawn at random from a well-shuffled deck of cards.

What is the probability of drawing a king of any suit?
What is the probability of drawing a face card that is also a spade?

Answers

Answer:

a) 1/3

Step-by-step explanation:

a) Probability of drawing a king of any suit

Number of kings = 4

P(king) = 4/52

= 1/13

b) Probability of drawing a face card that is also a spade

Number of face =3

P(king) = 3/ 52

Assume that when adults with smartphones are randomly​ selected, 58​% use them in meetings or classes. If 10 adult smartphone users are randomly​ selected, find the probability that at least 5 of them use their smartphones in meetings or classes.

Answers

Answer:

79.85% probability that at least 5 of them use their smartphones in meetings or classes.

Step-by-step explanation:

For each adult, there are only two possible outcomes. Either they use their smartphone during meetings or classes, or they do not. The probability of an adult using their smartphone in these situations are independent of other adults. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

Assume that when adults with smartphones are randomly​ selected, 58​% use them in meetings or classes.

This means that [tex]p = 0.58[/tex]

10 adults selected.

This means that [tex]n = 10[/tex]

Find the probability that at least 5 of them use their smartphones in meetings or classes.

[tex]P(X \geq 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)[/tex]

In which

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 5) = C_{10,5}.(0.58)^{5}.(0.42)^{5} = 0.2162[/tex]

[tex]P(X = 6) = C_{10,6}.(0.58)^{6}.(0.42)^{4} = 0.2488[/tex]

[tex]P(X = 7) = C_{10,7}.(0.58)^{7}.(0.42)^{3} = 0.1963[/tex]

[tex]P(X = 8) = C_{10,8}.(0.58)^{8}.(0.42)^{2} = 0.1017[/tex]

[tex]P(X = 9) = C_{10,9}.(0.58)^{9}.(0.42)^{1} = 0.0312[/tex]

[tex]P(X = 10) = C_{10,10}.(0.58)^{10}.(0.42)^{0} = 0.0043[/tex]

[tex]P(X \geq 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) = 0.2162 + 0.2488 + 0.1963 + 0.1017 + 0.0312 + 0.0043 = 0.7985[/tex]

79.85% probability that at least 5 of them use their smartphones in meetings or classes.

Consider the quadratic equation x2 = 4x - 5. How many solutions does the equation have?

Answers

Answer:

no real solutions2 complex solutions

Step-by-step explanation:

The equation can be rearranged to vertex form:

  x^2 -4x = -5 . . . . . . . . . subtract 4x

  x^2 -4x +4 = -5 +4 . . . . add 4

  (x -2)^2 = -1 . . . . . . . . . show the left side as a square

  x -2 = ±√-1 = ±i . . . . . . take the square root; the right side is imaginary

  x = 2 ± i . . . . . . . . . . . . . add 2. These are the complex solutions.

_____

Comment on the question

Every 2nd degree polynomial equation has two solutions. They may be real, complex, or (real and) identical. That is, there may be 0, 1, or 2 real solutions. This equation has 0 real solutions, because they are both complex.

There is a spinner with 14 equal areas, numbered 1 through 14. If the spinner is spun one time, what is the probability that the result is a multiple of 3 or a multiple of 2?

Answers

Answer:

There is a 11/14 chance that the result is a multiple of 3 or a multiple of 2.

Step-by-step explanation:

Since the spinner is from 1 to 14, find all of the multiples of 3 and multiples of 2.

There are 4/14 multiples of 3 and 7/14 multiples of 2.

Add both of these numbers together 4/14 + 7/14 = 11/14

If this answer is correct, please make me Brainliest!

The probability of landing on a multiple of 2 or 3 when spinning a spinner numbered 1 through 14 is 4/7.

The student asked about the probability of getting a multiple of 3 or a multiple of 2 when spinning a spinner numbered 1 through 14. To determine this, we first list the multiples of 3 and 2 within the range of numbers on the spinner.

Multiples of 3: 3, 6, 9, 12
Multiples of 2: 2, 4, 6, 8, 10, 12, 14
Note that 6 and 12 are multiples of both 2 and 3, so we should not count them twice.

The total number of distinct multiples of 2 or 3 is 3 (multiples of 3) + 7 (multiples of 2) - 2 (common multiples) = 8 unique numbers. Since there are 14 possible outcomes on the spinner, the probability of landing on a multiple of 3 or 2 is 8 (favorable outcomes) divided by 14 (total possible outcomes).

The probability calculation is: 8/14, which simplifies to 4/7.

Click the prime number cards to build composite numbers to 50. Click the blank card to add a new prime number

Answers

Answer:

See Explanation

Step-by-step explanation:

A prime number is a number that is only divisible by by 1 and itself.Composite numbers on the other hand is any number which is not prime.

To determine the number of prime cards needed to build a composite number, we simply express the number as a product of its prime factors.

These are:

4=2X2

6=2X3

8=2X2X2

9=3X3

10=2X5

12=2X2X3

14=2X7

15=3X5

16=2X2X2X2

18=2X3X3

20=2X2X5

21=3X7

22=2X11

24=2X2X2X3

26=2X13

27=3X3X3

28=2X2X7

30=2X3X5

32=2X2X2X2X2

33=3X11

34=2X17

35=5X7

36=2X2X3X3

38=2X19

39=3X13

40=2X2X2X5

42=2X3X7

44=2X2X11

45=3X3X5

46=2X2X13

48=2X2X2X2X3

49=7X7

50=2X5X5

Therefore for each of the numbers, those are the prime number cards to be used.

Increasing numbers of businesses are offering child-care benefits for their workers. However, one union claims that more than 85% of firms in the manufacturing sector still do not offer any child-care benefits to their workers. random sample of 330 manufacturing firms is selected and asked if they offer child-care benefits. Suppose the P-value for this test was reported to be p = 0.1071. State the conclusion of interest to the union. Use alpha=0.05 .

Answers

Final answer:

With a p-value of 0.1071 exceeding the significance level of 0.05, we do not reject the null hypothesis and conclude there is insufficient evidence to support the union's claim about child-care benefits in manufacturing firms.

Explanation:

The reported p-value of 0.1071 is greater than the significance level alpha (0.05). Based on this result, the appropriate statistical decision would be to do not reject the null hypothesis.

Therefore, at the 5 percent significance level, there is insufficient evidence to support the claim made by the union that more than 85% of firms in the manufacturing sector do not offer child-care benefits to their workers.

The higher p-value suggests that the data collected from the random sample of 330 manufacturing firms does not provide strong enough evidence to refute the possibility that the percentage of firms not offering child-care benefits is at or below 85%.

Mary lives on a corner lot. The neighborhood children have been cutting diagonally across her lawn instead of walking around the yard. If the diagonal distance across the lawn is 50 ft and the longer part of the sidewalk is twice the shorter length, how many feet are the children saving by cutting the lawn? round to the nearest foot if necessary.

Answers

Answer:

17 feet

Step-by-step explanation:

Length of the diagonal=50 feet

Let the shorter part of the sidewalk =x

Since the longer part of the sidewalk is twice the shorter length,

Length of the longer part of the sidewalk =2x

First, we determine the value of x.

Using Pythagoras Theorem and noting that the diagonal is the hypotenuse.

[tex]50^2=(2x)^2+x^2\\5x^2=2500\\$Divide both sides by 5\\x^2=500\\x=\sqrt{500}=10\sqrt{5} \:ft[/tex]

The length of the shorter side =[tex]10\sqrt{5} \:ft[/tex]

The length of the longer side =[tex]20\sqrt{5} \:ft[/tex]

Total Distance =[tex]10\sqrt{5}+ 20\sqrt{5}=67 \:feet[/tex]

Difference in Distance

67-50=17 feet

The children are saving 17 feet by cutting the lawn diagonally.

Does anybody know how to do #11, I figured out #10

Answers

Answer:

no

Step-by-step explanation:

10.) she needs 5.64, you basically do 2.35 divided by 5 and then you get 0.47 and multiply that by 12

11.) instead of doing 0.47 multiplied by 12 you would do 0.47 multiplied by 10

Valerie is taking a road trip over spring break. At 4:30 p.m. she looks down at her speedometer and notices that she is going 45 mph. Ten minutes later she looks down at the speedometer again and notices that she is going 55 mph. When was she moving exactly 50 mph?Select one:a. 4:30 p.m.b. 4:35 p.m.c. 4:40 p.m.d. Cannot be determined

Answers

Answer:

b. 4:35 p.m

Step-by-step explanation:

Her speed in t minutes after 4:30 p.m. is modeled by the following equation:

[tex]v(t) = v(0) + at[/tex]

In which v(0) is her speed at 4:30 pm and a is the acceleration.

At 4:30 p.m. she looks down at her speedometer and notices that she is going 45 mph.

This means that [tex]v(0) = 45[/tex]

Ten minutes later she looks down at the speedometer again and notices that she is going 55 mph.

This means that [tex]v(10) = 55[/tex]

So

[tex]v(t) = v(0) + at[/tex]

[tex]55 = 45 + 10a[/tex]

[tex]10a = 10[/tex]

[tex]a = 1[/tex]

So

[tex]v(t) = 45 + t[/tex]

When was she moving exactly 50 mph?

This is t minutes after 4:30 p.m.

t is found when v(t) = 50. So

[tex]v(t) = 45 + t[/tex]

[tex]50 = 45 + t[/tex]

[tex]t = 5[/tex]

5 minutes after 4:30 p.m. is 4:35 p.m.

So the correct answer is:

b. 4:35 p.m

2.The mean area of several thousand apartments in a new development is advertised to be 1,100 square feet. A consumer advocate has received numerous complaints that the apartments are smaller than advertised. A state building inspector is sent out to measure a sample of apartments. State the null and the alternative hypothesis to test this claim.

Answers

Answer:

Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 1,100 square feet

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] < 1,100 square feet

Step-by-step explanation:

We are given that the mean area of several thousand apartments in a new development is advertised to be 1,100 square feet.

A consumer advocate has received numerous complaints that the apartments are smaller than advertised.

Let [tex]\mu[/tex] = mean area of several apartments.

So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 1,100 square feet

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] < 1,100 square feet

Here, null hypothesis states that the mean area of apartments are same as advertised.

On the other hand, alternate hypothesis states that the mean area of apartments are smaller than advertised.

So, this would be the appropriate null and the alternative hypothesis to test this claim.

Insert three geometric means between 2 and 81/8

Answers

Answer:

The three geometric means are 3, 9/2 and 27/4

Step-by-step explanation:

The nth term of a geometric sequence is expressed as Tn = [tex]ar^{n-1}[/tex] where;

a is the first term

r is the common ratio

n is the number of terms

Since we are to insert three geometric means between 2 and 81/8, the total number of terms in the sequence will be 5 terms as shown;

2, a, b, c, 81/8

a, b, and c are the 3 geometric mean to be inserted

T1 = [tex]ar^{1-1}[/tex] = 2

T1 = a = 2....(1)

T5= [tex]ar^{5-1}[/tex]

T5 = [tex]ar^{4}[/tex] = 81/8... (2)

Dividing equation 1 by 2 we have;

[tex]\frac{ar^{4} }{a}= \frac{\frac{81}{8} }{2}[/tex]

[tex]r^{4} = \frac{81}{16}\\\\r = \sqrt[4]{\frac{81}{16} } \\r = 3/2[/tex]

Given a =2 and r = 3/2;

[tex]T2=ar\\T2 = 2*3/2\\T2 = 3\\\\T3 = ar^{2} \\T3 = 2*\frac{3}{2} ^{2} \\T3 = 2*9/4\\T3 = 9/2\\\\T4 = ar^{3}\\T4 = 2*\frac{3}{2} ^{3} \\T4 = 2*27/8\\T4 = 27/4\\[/tex]

Therefore the three geometric means are 3, 9/2 and 27/4

In a geometric sequence where three terms lie between 2 and 81/8, the three geometric terms are:

[tex]\mathbf{T_2 =3 }[/tex]

[tex]\mathbf{T_3 =\frac{9}{2} }[/tex]

[tex]\mathbf{T_4 =\frac{27}{4} }[/tex]

Recall:

nth term of a geometric sequence is given as: [tex]\mathbf{T_n = ar^{n - 1}}[/tex]a = the first term; r = the common ratio; n = the number of terms

Given a geometric sequence, 2 . . . 81/8, with three other terms in the middle, first, find the value of r.

Thus:

First Term:

a = 2

Fifth Term:

[tex]T_5 = ar^{n - 1}[/tex]

a = 2

n = 5

r = ?

T5 = 81/8

Plug in the value of a, n, and T5

[tex]\frac{81}{8} = 2r^{5 - 1}\\\\\frac{81}{8} = 2r^4\\\\[/tex]

Multiply both sides by 8

[tex]\frac{81}{8} \times 8 = 2r^4 \times 8\\\\81 = 16r^4\\\\[/tex]

Divide both sides by 16

[tex]\frac{81}{16} = \frac{16r^4}{16} \\\\\frac{81}{16} = r^4\\\\[/tex]

Take the fourth root of both sides

[tex]\sqrt[4]{\frac{81}{16}} = r\\\\\frac{3}{2} = r\\\\\mathbf{r = \frac{3}{2}}[/tex]

Find the three geometric means [tex]T_2, T_3, $ and $ T_4[/tex] between 2 and 81/8.

[tex]\mathbf{T_n = ar^{n - 1}}[/tex]

a = 2

r = 3/2

Thus:

[tex]T_2 = 2 \times (\frac{3}{2}) ^{2 - 1}\\\\T_2 = 2 \times (\frac{3}{2}) ^{1}\\\\\mathbf{T_2 = 3}[/tex]

[tex]T_3 = 2 \times \frac{3}{2} ^{3 - 1}\\\\T_3 = 2 \times (\frac{3}{2}) ^{2}\\\\T_3 = 2 \times \frac{9}{4}\\\\\mathbf{T_3 =\frac{9}{2} }[/tex]

[tex]T_4 = 2 \times \frac{3}{2} ^{4 - 1}\\\\T_4 = 2 \times (\frac{3}{2}) ^{3}\\\\T_4 = 2 \times \frac{27}{8}\\\\\mathbf{T_4 =\frac{27}{4} }[/tex]

Therefore, in a geometric sequence where three terms lie between 2 and 81/8, the three geometric terms are:

[tex]\mathbf{T_2 =3 }[/tex]

[tex]\mathbf{T_3 =\frac{9}{2} }[/tex]

[tex]\mathbf{T_4 =\frac{27}{4} }[/tex]

Learn more here:

https://brainly.com/question/12115906

What is the volume of a sphere with a radius of 4 units?

Answers

The formula is (4*pi/3)*r^3, so 256*pi/3 cubic units = 268.08  cubic units. {whatever units r is in}

Answer:

(256/3)pi

Step-by-step explanation:

(4/3)(pi)(r^3) =

(4/3)(pi)(4^3) =

(4/3)(pi)(64) =

(256/3)pi

10 POINTS ! PLZ HURRY AND ANSWER (:​

Answers

Answer:

The top question = 189.25 rounded = 189.3 sq in

explanation: area= radius square x pi so radious is 5..sq will 25 then 25xpi(3.14)=78.50 78.50/2= 39.25 + 150 (area of rect) =189.25 rounded to 189.3

for the bottom question = 488 square cm

Step-by-step explanation:

17x22= 374

22-10=12

12x19=228 / 2 = 114

114 + 374 = 488 sq cm

Suppose that .06 of each of two populations possess a given characteristic. Samples of size 400 are randomly drawn from each population. The probability that the difference between the first sample proportion which possess the given characteristic and the second sample proportion which possess the given characteristic being more than .03 is _______.

Answers

Answer:

The correct answer to the following question will be "0.0367".

Step-by-step explanation:

The given values are:

[tex]p1=p2=0.06[/tex]

[tex]q1=q2=1-p1=0.94[/tex]

[tex]n1=n2=400[/tex]

As we know,

[tex]E(p1-p2)=p1-p2=0\\[/tex]

[tex]SE(p1-p2)=\sqrt{\frac{p1q1}{n1}+\frac{p2q2}{n2}}[/tex]

On putting the given values in the above expression, we get

                   [tex]= \sqrt{p1q1(\frac{1}{400}+\frac{1}{400})}[/tex]

                   [tex]=0.0168[/tex]

Now, consider

[tex]P(p1-p2>0.03)=P[\frac{(p1-p2)-E(p1-p2)}{SE(p1-p2)}>\frac{0.03-0}{0.0168}][/tex]

                            [tex]=P(Z>1.7857)[/tex]

                            [tex]=P(Z>1-79)[/tex]

                            [tex]=0.036727[/tex]

Therefore, "0.0367" is the right answer.

Final answer:

Calculating the probability of the difference between two sample proportions being more than 0.03 involves executing a hypothesis test via a z-test due to our large sample size. We formulate and employ a formula to get the z-score and then determine the associated p-value using a statistical tool.

Explanation:

This question falls within the area of statistics, particularly dealing with hypothesis testing and comparison of two independent population proportions. Given that 0.06 of each population possess a certain characteristic and samples of size 400 are drawn from each, we are required to calculate the probability that the difference between the sample proportions exceeds 0.03.

First, we establish the null hypothesis (H0) and alternative hypothesis (Ha) for the test. H0: P1 = P2 and Ha: P1 ≠ P2. Here, P1 and P2 represent the populations respectively. Given a sufficiently large sample size (n > 30), we use a z-test for comparing the proportions.

In computing the z-score, we use the following formula: z = (P1 - P2) / √ ((P*(1 - P*) / n1) + (P*(1 - P*) / n2)). Here, P* = (x1 + x2) / (n1 + n2), where x is the number of successes in each sample (0.06*400 = 24 per population logistically).

The p-value associated with the calculated z-score, which represents the probability that the difference between the first sample proportion and the second sample proportion being more than 0.03, can be found using a statistical calculator or statistical software. The precise numerical value for p will depend on the computed z-score.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ11

Find the missing side of the triangle. Leave your answer in simplest radical
form.​

Answers

Answer:

that answer is D

Step-by-step explanation:

I used pythagreum theurum a^2+b^2=c^2

then i divided square root 260 by 4 the largest perfect square factor which gives us 2 square root 65 because 4 is a perfect square that equal 2

In cooking class, Sofia measures a stick of butter. It is 13 centimeters long, 3 centimeters
wide, and 3 centimeters tall. What is the volume of the stick of butter?

Answers

Answer:  117 centimeters

Step-by-step explanation:

Answer:

117 cm³

Step-by-step explanation:

To calculate the volume of a Rectangular Prism, we must use the formula:

l×w×h=V.

In this case, l= 13, w= 3, and h= 3.

When these values are substituted in, we get:

13×3×3= 117 cm³

Which triangle can be solved using the law of sines?

Answers

Answer:

for AAS triangles or SSA

Step-by-step explanation:

Answer:

ny triangle whose two sides and 1 angle is known or 2 angles are known and 1 side is known

Step-by-step explanation:

I need help ASAP what do I put for what I already know

Answers

Well what do you already know?

Solve the right triangle shown in the figure. Around lengths to two decimal places and express angles to the nearest tenth of a degree.

Answers

Answer:

a = 65.37

b = 46.11

B = 35.2

Step-by-step explanation:

sin 54.8 = a / 80

a = 80 sin 54.8 = 65.3715 = 65.4

[tex]b^{2} = c^{2} - a^{2}[/tex]

b=[tex]\sqrt{80^2 - 65.3715^2}[/tex]

b=46.1147 = 46.11

B = 180 - 90 - 54.8 = 35.2

The sides and the angles as follows:

Therefore,

∠A = 54.8°

∠B = 35.2°

∠C = 90°

a ≈ 65.37

b ≈ 46.64

c = 80

The triangle is a right angle triangle. Using trigonometric ratios, let's find a.

sin 54.8 = opposite / hypotenuse

sin 54.8 = a / 80

a = 80 sin 54.8

a = 65.3715918668

a ≈ 65.37

let's use Pythagoras theorem to find b.

c² = a² + b²

b² = c² - a²

b² =  80² - 65²

b² = 6400 - 4225

b² = 2175

b = √2175

b = 46.6368952654

b ≈ 46.64

let's find ∠B

∠A +  ∠B +  ∠C = 180°

∠B = 180 - 54.8 - 90

∠B = 35.2°

Therefore,

∠A = 54.8°

∠B = 35.2°

∠C = 90°

The sides are as follows:

a ≈ 65.37

b ≈ 46.64

c = 80

read more: https://brainly.com/question/3770177?referrer=searchResults

Please help!! MATH! WILL MARK BRAINLIEST!!

Answers

Answer:

Step-by-step explanation:

Find the Surface Area.
18m2
20m2
16m2
15m2

Answers

Answer:

20 meters square

Step-by-step explanation:

Surface Area of this square based pyramid =  A  = base area + 4* (face area)

A = (2 *2)  +  4* ( (1/2)*2 * 4) )

A = 4 + 4*(4)

A = 4 + 16 = 20

A = 20 square meters

Other Questions
The distance, A, in the image representsA)amplitude.B)frequency.C)period.D)wavelength. Which is NOT a recommended way to organize a speech?A. chronological orderB. topical orderC. problem-solution orderD. linear narrative order Imagine you are writing an argument to convince others that people should become vegetarians. You want people to stop eating meat and start eating nuts and beans for protein. Which group of people can you expect to support you without even reading your argument? (10 points)Group of answer choicesCattle ranch ownersFast food executivesState level lawmakersAnimal rights supporters Which function graph has axis of symmetry x=2 You own a two-bond portfolio. Each has a par value of $1000. Bond A matures in 5 years, has a coupon rate of 8 percent, and has an annual yield to maturity of 9.20 percent. Bond B matures in 15 years, has a coupon rate of 8 percent and has an annual yield to maturity of 8.20 percent. Both bonds pay interest semiannually. (a) What is the value of your portfolio?(b) If each yield to maturity rises by one percentage point, then the value of your portfolio is $1,748.28. True or False? If a sunspot has a temperature of 3900 K and the photosphere of the Sun has a temperature of 5760 K, how many timesbrighter per unit area is the photosphere than the sunspot? Which expression is equivalent to |a|3 ?1. a 3 or a 32. a 3 and a 33. a 3 or a 34. a 3 and a 3 If you were in charge of our economy, which of the takeaways would you choose? at least three sentences if not its okay What is the factorization of the polynomial below?3x^3- 12X^2-96x What did Germany hope to achieve by launching the Second Battle of the Somme? Is y=33x proportional or non proportional How does the uneven heating of land and water contribute to monsoons in India If Angle 2 is congruent to angle 4 and Angle 5 is congruent to angle 7, which describes all the lines that must be parallel? Lines r and s are crossed by lines t and u to form 16 angles. Clockwise from top left, at the intersection of r and t, the angles are 1, 2, 3, 4; at the intersection of s and t, 5, 6, 7, 8; at the intersection of u and s, 9, 10, 11, 12; at the intersection of u and r, 13, 14, 15, 16. Only lines r and s must be parallel. Only lines t and u must be parallel.Lines r and s and lines t and u must be parallel. Neither lines r and s nor lines t and u must be parallel. What exactly are the immoralists? Are they bad, or immoral people? A 475 ml sample of a gas was collected at room temperature of 23.5 C and a pressure of756 mm Hg. Calculate the volume of the gas if the conditions were altered to 10.0 C and apressure of 722 mm Hg. Which statement best summarizes William Shakespeares Sonnet 130 ? In a herd of cattle, the ratio of the numberof bulls to cows is 1:6.Find the number of bulls in terms of x. Which country did each man explore?A Columbus B Cartier C Prince Henry D La Salle E Polo F Balboa G Champlain 1 Italy2 Spain3 Portugal4 France if oxygen gas is collected over water at 23.5c and 750.0 mm Hg, what is the pressure of the gas collected? Help Pleaseee Thank you! Steam Workshop Downloader