The position of a particle is given by the function x=(4t3−6t2+12)m, where t is in s.
A.) at what time does the particle reach its minimum velocity
B.) what is (vx)min
C.) at what time is the acceleration zero

Answers

Answer 1

Answer

given,

x = 4 t³ - 6 t² + 12

velocity, [tex]v = \dfrac{dx}{dt}[/tex]

[tex]\dfrac{dx}{dt}=\dfrac{d}{dt}(4t^3-6t^2+12)[/tex]

[tex]v =12t^2-12t[/tex]

For minimum velocity calculation we have differentiate it and put it equal to zero.

[tex]\dfrac{dv}{dt} =\dfrac{d}{dt}12t^2-12t[/tex]

[tex]\dfrac{dv}{dt} =24t-12[/tex].........(1)

putting it equal to zero

24 t - 12 =0

t = 0.5 s

At t = 0.5 s velocity will be minimum.

b) minimum velocity

    v = 12t² -12 t

    v = 12 x 0.5² -12 x 0.5

    v = -3 m/s

c) derivative of velocity w.r.t. time is acceleration

from equation 1

     a = 24 t - 12

time at which acceleration will be zero

     0 = 24 t - 12

     t = 0.5 s

At t = 0.5 s acceleration will be zero.

Answer 2

Part A. The particle reaches its minimum velocity at 0.5 seconds.

Part B. The minimum velocity of the particle is -3 m/s.

Part C. The acceleration of the particle will be zero at the time t = 0.5 seconds.

How do you calculate the minimum velocity and acceleration?

Given that the position of a particle is given by the function x.

[tex]f(x) = 4t^2 -6t^2 +12[/tex]

The function of the velocity of a particle can be obtained by the time function.

[tex]v= \dfrac {dx}{dt}[/tex]

[tex]v = \dfrac {d}{dt} ( 4t^3-6t^2 +12)[/tex]

[tex]v = 12t^2 -12 t[/tex]

The velocity function of the particle is [tex]v = 12t^2 - 12t[/tex].

Part A

The minimum velocity of the particle is obtained by the differentiation of velocity function with respect to the time and put it equal to zero.

[tex]\dfrac {dv}{dt} = \dfrac {d}{dt} (12t^2 - 12t) = 0[/tex]

[tex]\dfrac {dv}{dt} = 24 t-12 = 0[/tex]

[tex]t = 0.5\;\rm s[/tex]

Hence we can conclude that the particle reaches its minimum velocity at 0.5 seconds.

Part B

The velocity function is [tex]v = 12t^2 - 12t[/tex]. Substituting the value of t = 0.5 s to calculate the minimum velocity.

[tex]v = 12(0.5)^2 - 12(0.5)[/tex]

[tex]v = 3 - 6[/tex]

[tex]v = -3 \;\rm m/s[/tex]

The minimum velocity of the particle is -3 m/s.

Part C

The acceleration is defined as the change in the velocity with respect to time. Hence,

[tex]a = \dfrac {dv}{dt}[/tex]

[tex]a = 24 t-12[/tex]

Substituting the value of a = 0, we get the time.

[tex]0 = 24t - 12[/tex]

[tex]t = 0.5 \;\rm s[/tex]

The acceleration of the particle will be zero at the time t = 0.5 seconds.

To know more about acceleration and velocity, follow the link given below.

https://brainly.com/question/2239252.


Related Questions

Part complete How long must a simple pendulum be if it is to make exactly one swing per five seconds?

Answers

Answer:

[tex]L=6.21m[/tex]

Explanation:

For the simple pendulum problem we need to remember that:

[tex]\frac{d^{2}\theta}{dt^{2}}+\frac{g}{L}sin(\theta)=0[/tex],

where [tex]\theta[/tex] is the angular position, t is time, g is the gravity, and L is the length of the pendulum. We also need to remember that there is a relationship between the angular frequency and the length of the pendulum:

[tex]\omega^{2}=\frac{g}{L}[/tex],

where [tex]\omega[/tex] is the angular frequency.

There is also an equation that relates the oscillation period and the angular frequeny:

[tex]\omega=\frac{2\pi}{T}[/tex],

where T is the oscillation period. Now, we can easily solve for L:

[tex](\frac{2\pi}{T})^{2}=\frac{g}{L}\\\\L=g(\frac{T}{2\pi})^{2}\\\\L=9.8(\frac{5}{2\pi})^{2}\\\\L=6.21m[/tex]

A "free" electron and a "free" proton are placed in an identical electric field. Which of the following statements are true?
(Selectall that apply.)
a. Each particle is acted upon by the sameelectric force and has the same acceleration.
b. The magnitude of the acceleration of theelectron is greater than that of the proton.
c. The electric force on the proton isgreater in magnitude than the electric force on the electron, butin the opposite direction.
d. Both particles have the same acceleration.
e. The electric force on the proton is equalin magnitude to the electric force on the electron, but in the opposite direction.

Answers

Answer:b and e

Explanation:

When electron and proton are placed in the same Electric field then the force experienced by electron and proton is the same as the charge possessed by them is the same . The direction of force is different on them but the magnitude is the same.

The electric field force is the product of charge and strength of the electric field.

We know the mass of an electron is less than the mass of proton that is why the acceleration of electron is more as compared to proton for the same Electric force.

thus option b and e are correct.                                  

The statements which are true of a "free" electron and a "free" proton are placed in an identical electric field are: Choice b and Choice e.

According to the question:

They are placed in an identical electric field.

In essence, the magnitude of the Coulumb's force of attraction or repulsion is the same for the free electron and free proton.

However, the direction of the forces are opposite as the protons and electron have opposing signs.

Additionally, since the mass of an electron is relatively infinitesimal compared to a proton, The acceleration of the electron is greater than that of the proton.

Read more:

https://brainly.com/question/13388252

Clearly cellulose is very abundant on earth, and it is a long-lasting stable substance. Many animals cannot digest cellulose. Given this, what prevents the bodies of dead plants from filling the earth?

Answers

Answer:The process that prevents the bodies of dead plant from filling the earth is decomposition of their remains.

Explanation:

1. Fungi and bacteria in the soil help decompose the remains of dead plant and uses them to enrich and nourish other plants that are alive.

2. Insects, worms and other invertebrates feed on the too

An athlete at high performance inhales 4.0L of air at 1 atm and 298 K. The inhaled and exhaled air contain 0.5% and 6.2% by volume of water,respectively. For a respiration rate of 40 breaths per minute, how many moles of water per minute are expelled from the body through the lungs?

Answers

To solve this problem we will calculate the total volume of inhaled and exhaled water. From the ideal gas equation we will find the total number of moles of water.

An athlete at high performance inhales 4.0L of air at 1atm and 298K.

The inhaled and exhaled air contain 0.5% and 6.2% by volume of water, respectively.

During inhalation, volume of water taken is

[tex]V_i = (4L)(0.5\%)[/tex]

[tex]V_i = 0.02L[/tex]

During exhalation, volume of water expelled is

[tex]V_e = (4L)(6.2\%)[/tex]

[tex]V_e = 0.248L[/tex]

During 40 breathes, total volume of water taken is

[tex]V_{it} = (40L)(0.02L) = 0.8L[/tex]

During 40 breathes, total volume of water expelled out is

[tex]V_{et} = (40L)(0.248L) = 9.92L[/tex]

Therefore resultant volume of water expelled out from the lung is

[tex]\Delta V = 9.92L-0.8L = 9.12[/tex]

From the body through the lung we have that

[tex]n = \frac{PV}{RT}[/tex]

Here,

P = Pressure

R= Gas ideal constant

T= Temperature

V = Volume

Replacing,

[tex]n = \frac{(1atm)(9.12L)}{(8.314J/mol \cdot K)(298K)}[/tex]

[tex]n = 0.373mol/min[/tex]

Therefore the moles of water per minute are expelled from the body through the lungs is 0.373mol/min

Final answer:

The athlete expels 8.89 x 10^-2 moles of water per minute through the lungs.

Explanation:

To calculate the number of moles of water per minute expelled by the athlete through the lungs, we need to determine the amount of water evaporated with each breath and then multiply it by the respiration rate. According to the information provided, an average breath is about 0.5 L, and each breath evaporates 4.0 x 10^-2 g of water. We can convert grams of water to moles by dividing by the molar mass of water (18.02 g/mol). So, the moles of water evaporated with each breath are (4.0 x 10^-2 g)/(18.02 g/mol) = 2.22 x 10^-3 mol/breath.

Next, we can calculate the number of breaths per minute multiplied by the moles of water evaporated per breath to find the moles of water expelled per minute. The respiration rate is given as 40 breaths per minute. Therefore, the moles of water expelled per minute are (2.22 x 10^-3 mol/breath) x 40 breaths/minute = 8.89 x 10^-2 mol/minute.

A block of wood is floating in water; it is depressed slightly and then released to oscillate up and down. Assume that the top and bottom of the block are parallel planes which remain horizontal during the oscillations and that the sides of the block are vertical. Show that the period of the motion (neglecting friction) is 2π ph/g, where h is the vertical height of the part of the block under water when it is floating at rest. Hint: Recall that the buoyant force is equal to the weight of displaced water.

Answers

Explanation:

Equilibrium position in y direction:

W = Fb (Weight of the block is equal to buoyant force)

m*g = V*p*g

V under water = A*h

hence,

m = A*h*p

Using Newton 2nd Law

[tex]-m*\frac{d^2y}{dt^2} = Fb - W\\\\-m*\frac{d^2y}{dt^2} = p*g*(h+y)*A - A*h*p*g\\\\-A*h*p*\frac{d^2y}{dt^2} = y *p*A*g\\\\\frac{d^2y}{dt^2} + \frac{g}{h} * y =0[/tex]

Hence, T time period

T = 2*pi*sqrt ( h / g )

Solar energy strikes earth’s atmosphere at 343 W m-2 . About 30% is reflected and the rest is absorbed

Answers

Answer:

The black body temperature of Earth T_e= 180.4 K

Explanation:

Assuming we have to find Black body temperature of the earth.

[tex]T_e =(\frac{s_o(1-\alpha)}{4\sigma})^{0.25}[/tex]

S0= solar energy striking the earth= 343 Wm^{-2}

\alpaha = 30% = 0.3

\sigma = stephan boltsman constant.= 5.67×10^{-8} Wm^{-2}K^4

[tex]T_e =(\frac{343(1-0.3)}{4\times5.67×10^{-8}})^{0.25}[/tex]

T_e= 180.4 K

If the distance between two charges is doubled, by what factor is the magnitude of the electric force changed? F_e final/F_e, initial =____

Answers

To solve this problem we will apply the concepts related to Coulomb's law for which the Electrostatic Force is defined as,

[tex]F_{initial} = \frac{kq_1q_2}{r^2}[/tex]

Here,

k = Coulomb's constant

[tex]q_{1,2}[/tex] = Charge at each object

r = Distance between them

As the distance is doubled so,

[tex]F_{final} = \frac{kq_1q_2}{( 2r )^2}[/tex]

[tex]F_{final} = \frac{ kq_1q_2}{ 4r^2}[/tex]

[tex]F_{final} = \frac{1}{4} \frac{ kq_1q_2}{r^2}[/tex]

[tex]F_{final} = \frac{1}{4} F_{initial}[/tex]

[tex]\frac{F_{final}}{ F_{initial}} = \frac{1}{4}[/tex]

Therefore the factor is 1/4

A parallel-plate capacitor is connected to a battery. What happens to the stored energy if the plate separation is doubled while the capacitor remains connected to the battery?

(a) It remains the same
(b) It is doubles
(c) It decreases by a factor of 2
(d) It decreases by a factor of 4
(e) It increases by a factor of

Answers

Answer:

(c)  As 'd' becomes doubled, energy decreases by the factor of 2

Explanation:

Energy stored in a parallel plate capacitor is given by:

[tex]U=\frac{1}{2}CV^2\\\\C=\frac{A\epsilon_{o}}{d}\\\\then\\\\U=\frac{1}{2}\frac{A\epsilon_{o}}{d}V^2--(1)\\\\[/tex]

As capacitor remains connected to the battery so V remains constant. As can be seen from (1) that energy is inversely proportional to the separation between the plates so as 'd' becomes doubled, energy decreases by the factor of 2.

Answer:

(c) It decreases by a factor of 2

Explanation:

Since the capacitor is still connected to the power source, the potential difference remain the same even when the distance is a doubled.

The energy stored in a capacitor can be written as:

E = (1/2)CV^2 .....1

And the capacitance of a capacitor is inversely proportional to the distance between the two plates of the capacitor.

C = kA/d ....2

Therefore, when d doubles, and every other determinant of capacitance remains the same, the capacitance is halved.

Cf = kA/2d = C/2

Cf = C/2

Since the capacitance has been halved and potential difference remains the same, the energy stored would also be halved since the energy stored in the capacitor is directly proportional to the capacitance.

Ef = (1/2)(Cf)V^2

Ef = (1/2)(C/2)V^2 = [(1/2)CV^2]/2

Ef = E/2

Where;

E and Ef are the initial and final energy stored in the capacitor respectively

C and Cf are the initial and final capacitance of the capacitor.

d is the distance between the plates

A is the area of plates

k is the permittivity of dielectrics

Therefore the energy stored in the capacitor is decreased by a factor of 2, when the distance is doubled.

Masses are stacked on top of the block until the top of the block is level with the waterline. This requires 20 g of mass. What is the mass of the wooden block

Answers

Answer:

Mass of the wooden Block is 20g.

Explanation:

The buoyant force equation will be used here

Buoyant Force= ρ*g*1/2V Here density used is of water

m*g= ρ*g*1/2V

Simplifying the above equation

2m= ρ*V Eq-1

Also we know from the question that

ρ*V = m + 0.020 Eq-2 ( Density = (Mass+20g)/Volume )

Equating Eq-1 & Eq-2 we get

2m = m+0.020

m = 0.020kg

m = 20g

If the gap between C and the rigid wall at D is initially 0.15 mm, determine the magnitudes of the support reactions at A and D when the force P

Answers

Answer / Explanation

The question in the narrative is incomplete.

Kindly find the complete question below:

If the gap between C and the rigid wall at D is  initially 0.15 mm, determine the support reactions at A and  D when the force is applied. The assembly  is made of A36 steel

Procedure

Recalling the the equation of equilibrium and referencing the free body diagram of the assembly,

Therefore, ∑fₓ  = 0 ,

where, 20 ( 10³) - Fₐ - Fₙ = 0 --------------equation (1)

Now, recalling the compatibility equation, while utilizing the superposition method,

Therefore, δₓ - δfₓ

= 0.15  = 200(10³)(600) ÷ π/4 (0.05²)(200)(10⁹) - [ Fₐ (600) / π/4 (0.05²)(200)(10⁹) + Fₐ (600) π / 4 (0.05²)(200)(10⁹) ]

Solving this further,

We get: Fₐ = 20365.05 N

 Which is equivalent to = 20.4 kN.

Now, substituting the answer (Fₐ) into equation (1)

                Fₙ = 179634.95 N

                        = 180 kN

The pressure rise p associated with wind hitting a window of a building can be
estimated using the formula p = rho(V2
/2), where rho is density of air and V is the speed of the
wind. Apply the grid method to calculate pressure rise for rho = 1.2 kg/m3
and V = 100 km/h.
(20%)
a. Express your answer in pascals.
b. Express your answer in meters of water column (m-H2O).

Answers

Answer:

a)P=462.70 Pa

b)h = 0.047 m of water

Explanation:

Given that

Pressure ,[tex]P=\dfrac{1}{2}\rho V^2[/tex]

[tex]\rho = 1.2\ kg/m^3[/tex]

V= 100 km/h

[tex]V=100\times \dfrac{1000}{3600}\ m/s[/tex]

V=27.77 m/s

The pressure P

[tex]P=\dfrac{1}{2}\rho V^2[/tex]

[tex]P=\dfrac{1}{2}\times 1.2\times 27.77^2\ Pa[/tex]

P=462.70 Pa

We know that density of the water [tex]\rho=1000\ kg/m^3[/tex]

Lets height of the water column = h m

We know that

[tex]_P=\rho _w g h[/tex]

462.70 = 1000 x 9.81 h

[tex]h=\dfrac{462.7}{1000\times 9.81}\ m[/tex]

h = 0.047 m of water

a)P=462.70 Pa

b)h = 0.047 m of water

a)The presuure rise will be P=462.70 Pa

b) The height of the water column h = 0.047 m of water

What will be the pressure rise and the height of the water column of the fluid?

It is given that

Pressure,

[tex]p= \dfrac{1}{2} \rho v^2[/tex]

Here   [tex]\rho =1.2 \ \dfrac{kg}{m^3}[/tex]

[tex]V=100\ \frac{km}{h} =\dfrac{100\times 1000}{3600} =27.77 \ \dfrac{m}{s}[/tex]

Now to calculate the pressure P

[tex]P=\dfrac{1}{2} \rho v^2[/tex]

[tex]P= \dfrac{1}{2}\times 1.2\times (27.77)^2[/tex]

[tex]P=462.70 \ \frac{N}{m^2}[/tex]

As we know that the density of water

[tex]\rho = 1000\ \frac{kg}{m^3}[/tex]

Lets height of the water column = [tex]h_m[/tex]

As We know that

[tex]P= \rho_w gh[/tex]

[tex]462.70=1000\times 9.81\times h_m[/tex]

[tex]h_m=0.047\ m \ of \ water[/tex]

Thus

a)The presuure rise will be P=462.70 Pa

b) The height of the water column h = 0.047 m of water

To know more about the pressure of fluids follow

https://brainly.com/question/24827501

The position of a particle moving along the x-axis varies with time according to x(t) = 5.0t2-4.0t3m. Find (a) the displacement, average velocity, average acceleration between 0.0 s and 1.0,

Answers

Answer:

[tex]\Delta x=1-0=1\ m[/tex]

[tex]\Delta v=-2-0=-2\ m.s^{-1}[/tex]

[tex]\Delta a=-14-10=-24\ m.s^{-1}[/tex]

Explanation:

The equation governing the position of the particle moving along x-axis is given as:

[tex]x=5\times t^2-4\times t^3[/tex]

we know that the time derivative of position gives us the velocity:

[tex]\frac{d}{dt} x=v[/tex]

[tex]v=10\ t-12\ t^2[/tex]

and the time derivative of of velocity gives us the acceleration:

[tex]\frac{d}{dt} v=a[/tex]

[tex]a=10-24\ t[/tex]

Now, when t = 0

[tex]x=0\ m[/tex]

[tex]v=0\ m.s^{-1}[/tex]

[tex]a=10\ m.s^{-2}[/tex]

When t=1 s

[tex]x_1=5\times 1^2-4\times 1^3=1\ m[/tex]

[tex]v_1=10\times 1-12\times 1^2=-2\ m.s^{-1}[/tex]

[tex]a_1=10-24\times 1=-14\ m.s^{-2}[/tex]

Hence,

Displacement between the stipulated time:

[tex]\Delta x=x_1-x[/tex]

[tex]\Delta x=1-0=1\ m[/tex]

Velocity between the stipulated time:

[tex]\Delta v=v_1-v[/tex]

[tex]\Delta v=-2-0=-2\ m.s^{-1}[/tex]

Acceleration between the stipulated time:

[tex]\Delta a=a_1-a[/tex]

[tex]\Delta a=-14-10=-24\ m.s^{-1}[/tex]

Here negative sign indicates that the vectors are in negative x direction.

An expensive vacuum system can achieve a pressure as low as 1.83 ✕ 10−7 N/m2 at 28°C. How many atoms are there in a cubic centimeter at this pressure and temperature?

Answers

Answer:[tex]44.1\times 10^6[/tex] atoms

Explanation:

According to the ideal gas equation:

[tex]PV=nRT[/tex]

P = Pressure of the gas = [tex]1.83\times 10^{-7}N/m^2=1.81\times 10^{-12}atm[/tex]     [tex]1N/m^2=9.87\times 10^{-6}atm[/tex]

V= Volume of the gas = [tex]1cm^3=1ml=0.001L[/tex]       (1L=1000ml)

T= Temperature of the gas = 28°C = 301 K      [tex]0^0C=273K[/tex]  

R= Gas constant = 0.0821 atmL/K mol

n=  moles of gas= ?

[tex]n=\frac{PV}{RT}=\frac{1.81\times 10^{-12}atm\times 0.001L}0.0821Latm/Kmol\times 301K}=7.32\times 10^{-17}moles[/tex]

Number of atoms =[tex]moles\times {\text {avogadro's number}}=7.32\times 10^{-17}mol\times 6.023\times 10^{23}mol^{-1}=44.1\times 10^6atoms[/tex]

Thus there are [tex]44.1\times 10^6[/tex] atoms  in a cubic centimeter at this pressure and temperature.

A hunter is aiming horizontally at a monkey who is sitting in a tree. The monkey is so terrified when it sees the gun that it falls off the tree. At that very instant, the hunter pulls the trigger. What will happen?

a) The bullet will miss the monkey because the monkey falls down while the bullet speeds straight forward.
b) The bullet will hit the monkey because both the monkey and the bullet are falling downward at the same rate due to gravity.
c) The bullet will miss the monkey because although both the monkey and the bullet are falling downward due to gravity, the monkey is falling faster.
d) It depends on how far the hunter is from the monkey.

Answers

Answer:a) The bullet will miss the monkey because the monkey falls down while the bullet speeds straight forward.

Explanation: The bullet keeps as it aim( the monkey) unless it is redirected by an external force that could redirect it. Hence, the bullet speeds straight forward.

Final answer:

(b) The bullet will hit the monkey because both the monkey and the bullet are subject to gravity's acceleration equally upon being released or fired; both will fall downward at the same rate. Hence, (b) is the correct option.

Explanation:

When a hunter aims horizontally at a monkey in a tree and the monkey drops at the moment the gun is fired, the outcome is determined by Newtonian physics.

According to Newton's laws, the bullet and the monkey are both subject to gravity and will start to fall toward the ground at the same rate, regardless of any horizontal motion. Therefore, the correct answer is:

b) The bullet will strike the monkey because gravity causes both the bullet and the monkey to fall at the same speed.

This scenario illustrates the principle that horizontal and vertical motions are independent of each other. When the gun is fired, the bullet travels forward while also accelerating downward due to gravity.

Since the monkey begins to fall at the same moment the bullet is fired, both the bullet and the monkey undergo the same downward acceleration, meaning they will fall together.

A rigid tank internal energy of fluid 800kJ. Fluid loses 500kJ of heat and padle wheel does 100kJ of work. Find final internal energy in tank.

Answers

Answer:

 U₂ = 400 KJ      

Explanation:

Given that

Initial energy of the tank ,U₁= 800 KJ

Heat loses by fluid ,Q= - 500 KJ

Work done on the fluid ,W= - 100 KJ

Sign -

1.Heat rejected by system - negative

2.Heat gain by system - Positive

3.Work done by system = Positive

4.Work done on the system-Negative

Lets take final internal energy =U₂

We know that

Q= U₂ - U₁ + W

-500 = U₂ - 800 - 100

U₂ = -500 +900 KJ

U₂ = 400 KJ

Therefore the final internal energy = 400 KJ

If you must do positive work to bring a charged balloon toward a negatively charged sphere, is the charge on the balloon positive or negative? Or can it have any sign?

Answers

Let's start from the definition of attraction and repulsion. Similar charges tend to repel each other, while different charges attract. When work is done due to the force of attraction its value will be negative, while if work is done due to the force of repulsion its value will be positive.

Given this the sphere has a negative charge.

In other words, if the balloon has a positive charge, it will be attracted by the sphere with negative charge. In this case, you would not have to do a positive job to bring them together. If the balloon has a negative charge, it will be repelled by the sphere with a negative charge. In this case, you will do a positive job to unite them.

Therefore, the load on the balloon is negative.

The charge on the ballon will be Negative

What do you understand by Columbus's law of attraction and repulsion forces?

The answer to this question is based on the column's law of forces of attraction and repulsion between two charged atoms.

The formula for calculating the magnitude of the forces is given as

[tex]F=k\dfrac{q_1q_2}{r^2}[/tex]

Here [tex]q_1 & \ q_2[/tex]  are the two charged atoms

r = Distance between the two particles

k is constant

Now if two charged particles are having like charges that are both charged particles carrying positive or both carrying a negative charge then there will be Force of repulsion created between them

If both the  Particles have the opposite charges on them then there will be a force of attraction between them.

The charge on the ballon will be negative that's why there is positive work needed to  bring the ballon  towards the negatively charged sphere

Thus the charge on the ballon will be Negative

To know more about the nature of the charges follow

https://brainly.com/question/18108470

The legs of a weight lifter must ultimately support the weights he has lifted. A human tibia (shinbone) has a circular cross section of approximately 3.6 cm outer diameter and 2.30 cm inner diameter. (The hollow portion contains marrow.)If a 90.0 kg lifter stands on both legs, what is the heaviest weight he can lift without breaking his legs, assuming that the breaking stress of the bone is 150 MPa ?

Answers

Final answer:

To determine the heaviest weight a weight lifter can lift without breaking his legs, we need to calculate the stress on the bones. By using the dimensions of the tibia and the breaking stress of bone, we can calculate the maximum weight the lifter can lift.

Explanation:

To determine the heaviest weight a weight lifter can lift without breaking his legs, we need to calculate the stress on the bones. Stress is defined as the force applied per unit area. In this case, we can calculate the stress on the tibia using the formula stress = force/area. The area of the cross section of the tibia can be found by subtracting the area of the inner circle from the area of the outer circle. Once we have the stress, we can use it to determine the maximum weight the lifter can lift without breaking his legs.

Using the given dimensions of the tibia, we can calculate the area and stress:

Outer radius = 3.6 cm / 2 = 1.8 cm = 0.018 m

Inner radius = 2.3 cm / 2 = 1.15 cm = 0.0115 m

Area of outer circle = π * (0.018 m)^2 = 0.001018 m^2

Area of inner circle = π * (0.0115 m)^2 = 0.000415 m^2

Area of tibia = Area of outer circle - Area of inner circle = 0.001018 m^2 - 0.000415 m^2 = 0.000603 m^2

Force on the tibia = weight lifted = mass * acceleration due to gravity = 90.0 kg * 9.8 m/s^2 = 882 N

Stress on the tibia = force/area = 882 N / 0.000603 m^2 = 1,460,070 Pa (or 1.46 MPa)

Therefore, the lifter can lift a maximum weight without breaking his legs if the stress on the tibia is less than or equal to the breaking stress of bone. In this case, the lifter can lift:

Maximum weight = breaking stress * area = 150 MPa * 0.000603 m^2 = 90.45 N

So, the lifter can lift a maximum weight of approximately 90.45 N without breaking his legs.

Learn more about Weight lifter's leg strength here:

https://brainly.com/question/41332779

#SPJ3

Common transparent tape becomes charged when pulled from a dispenser. If one piece is placed above another, the repulsice force can be great enough to support the top pieces weight. Assuming equal point charges, calculate the magnitide of the charge if electrostatic force is great enough to support the weight of a 11.0 mg piece of tape held 1.00 cm above another.

Answers

Answer:

Q = 1.095 x 10^-9 C

Let the force experienced by the top piece of tape be F

F = kQ²/r²

r = distance between the two pieces tape = 1.00cm = 1.00 x 10^ -2 m

1/4(pi)*Eo = k = 8.99 x 10^9 Nm²/C²

The electric force of repulsion between the two charges and the weight of the top piece of tape are equal so

F = kQ²/r² = mg

Where m is the mass of the top piece of tape and g is the acceleration due to gravity

On re-arranging the equation above,

Q² = mgr²/k

Q² = ((11.0 x 10^-6) x 9.8 x (1.00x10^-2)²)/(8.99 x 10^9)

Q = 1.095x10^-9 C

Explanation:

The charge Q on both pieces of tape are equal and both act with a force of repulsion on each other.

The force of repulsion between both tapes pushes the top piece of tape upwards. The weight of the top piece of tape acts vertically downward. Since the top tape is in a position of equilibrium, the two forces acting on the top piece of tape must be equal to each other. This assumption is backed up by newton's first law of motion which states that the summation of all forces acting on a body at rest must be equal to zero. That is

Fe (electric force) - Fg (gravitational force) = 0

Fe = Fg

kQ²/r² = mg

On substituting the respective values for all variables except Q and rearranging the equation Q = 1.09 x 10^-9

An object is undergoing SHM with period 0.300 s and amplitude 6.00 cm. At t = 0 the object is instantaneously at rest at x = 6.00 cm. Calculate the time it takes the object to go from x = 6.00 cm to x = -1.50 cm

Answers

Answer:

Time taken is 0.087 s

Solution:

As per the question:

Time period, T = 0.300 s

Amplitude, A = 6.00 cm

Now,

To calculate the time taken:

For SHM, we know that:

[tex]x = Acos\omega t[/tex]                               (1)

At x = 6.00 cm, the object comes to rest instantaneously at times t = 0.00 s

Thus from eqn (1), for x = 6.00  cm:

[tex]6.00 = 6.00cos\omega t[/tex]

[tex]cos\omega t = 1[/tex]

[tex]\omega t = cos^{- 1}(1)[/tex]

[tex]\omega t = 0[/tex]

Thus at t = 0.00 s, x = 6.00 cm

Now,

Using eqn (1) for x = - 1.50 cm:

[tex]- 1.50 = 6.00cos\omega t'[/tex]

[tex]cos\omega t' = -0.25[/tex]

We know that:

[tex]\omega = \frac{2\pi}{T}[/tex]

Thus

[tex]\frac{2\pi}{0.300} t' = cos^{- 1}(0.25)[/tex]

[tex]t' = 0.087\ s[/tex]

Time taken by the object in moving from x = 6.00 cm to x = 1.50 cm:

t' - t = 0.087 - 0.00 = 0.087 s

Final answer:

To find the time it takes for the object to go from x = 6.00 cm to x = -1.50 cm, we use the equation for simple harmonic motion. The time it takes is half of the period, which is 0.150 s.

Explanation:

To find the time it takes for the object to go from x = 6.00 cm to x = -1.50 cm, we need to use the equation for simple harmonic motion (SHM). The equation is given by x = A * cos(2π/T * t + φ), where x is the position, A is the amplitude, T is the period, t is the time, and φ is the phase shift.

First, we need to determine the phase shift. At t = 0, the object is at rest at x = 6.00 cm. This means the phase shift is 0, because the cosine function is at a maximum at t = 0.

Next, we can plug in the values into the equation. The amplitude A is 6.00 cm and the period T is 0.300 s. We want to find the time it takes for the object to go from x = 6.00 cm to x = -1.50 cm. In SHM, the object goes from -A to A and back in one period, so the time it takes to go from x = 6.00 cm to x = -1.50 cm is half of the period. Therefore, the time is 0.300 s / 2 = 0.150 s.

Learn more about Time calculation in Simple Harmonic Motion here:

https://brainly.com/question/22422926

#SPJ3

A rod of length 30.0 cm has linear density (mass per length) given by l 5 50.0 1 20.0x where x is the distance from one end, measured in meters, and l is in grams/meter. (a) What is the mass of the rod? (b) How far from the x 5 0 end is its center of mass?

Answers

Answer:

(a). The mass of the rod is 15.9 g.

(b). The center of mass is 0.153 m.

Explanation:

Given that,

Length = 30.0 cm

Linear density [tex]\labda=50.0+20.0x[/tex]

We need to calculate the mass of rod

Using formula of mass

[tex]M=\int{dm}[/tex]

[tex]M=\int{(50.0+20.0x)dx}[/tex]

[tex]M=50.0x+10x^2[/tex]

Put the value of x

[tex]M=50.0\times0.30+10\times(0.30)^2[/tex]

[tex]M=15.9\ g[/tex]

We need to calculate center of mass

The center of mass has an x coordinate is given by

[tex]x_{cm}=\dfrac{\int{xdm}}{\int{dm}}[/tex]

We need to calculate the value of  [tex]\int{xdm}[/tex]

[tex]\int{xdm}=\int{(50.0x+20.0x^2)dx}[/tex]

[tex]\int{xdm}=25x^2+\dfrac{20}{3}x^3[/tex]

Put the value into the formula

[tex]\int{xdm}=25\times0.3^2+\dfrac{20}{3}\times(0.3)^3[/tex]

[tex]\int{xdm}=2.43[/tex]

Put the value into the formula of center of mass

[tex]x_{cm}=\dfrac{2.43}{15.9}[/tex]

[tex]x_{cm}=0.153\ m[/tex]

Hence, (a). The mass of the rod is 15.9 g.

(b). The center of mass is 0.153 m.

Final answer:

To find the mass of the rod, integrate the linear density function. To find the center of mass, set up an integral to find the position x such that the total mass on one side is equal to the total mass on the other side.

Explanation:

(a) To find the mass of the rod, we need to integrate the linear density function over the length of the rod. The linear density function is given by ℓ(x) = l + 20x, where x is the distance from one end measured in meters and l is in grams/meter. We can integrate this function from 0 to 0.3 meters (corresponding to a length of 30.0 cm) to find the total mass:

M = ∫(0 to 0.3) (l + 20x) dx

M = ∫(0 to 0.3) l dx + ∫(0 to 0.3) 20x dx

(b) To find the center of mass of the rod, we need to find the position x such that the total mass on one side of it is equal to the total mass on the other side. We can set up an integral to find this position:

x_cm = ∫(0 to x_cm) (l + 20x) dx - ∫(x_cm to 0.3) (l + 20x) dx

Learn more about Center of mass here:

https://brainly.com/question/28996108

#SPJ2

In the high jump, the kinetic energy of an athlete is transformed into gravitational potential energy without the aid of a pole. Find the minimum speed must the athlete leave the ground in order to lift his center of mass 1.65 m and cross the bar with a speed of 0.75 m/s.

Answers

Answer:

The answer to your question is v₁ = 5.74 m/s

Explanation:

Data

v₁ = ?

h₁ = 0 m

v₂ = 0.75 m/s

h₂ = 1.65 m

g = 9.81 m/s²

Formula

                mgh₁   +  1/2mv₁²   =   mgh₂  +  1/2mv₂²

mass is not consider (if we factor mass, it is cancelled)

                        gh₁ + 1/2v₁²  =   gh₂  +  1/2v₂²

Substitution

                        (9.81)(0) + 1/2v₁² = (9.81)(1.65) + 1/2(0.75)²

Simplification

                                 0    +  1/2v₁² = 16.19 + 0.28

Solve for v₁

                                            1/2v₁² = 16.47

                                                 v₁² = 2(16.47)

                                                 v₁² = 32.94

Result

                                                v₁ = 5.74 m/s

Minimum speed must 5.74 m/s in order to lift his center of mass 1.65 m and cross the bar with a speed of 0.75 m/s.

Given here,

v₁ - initial velocity = ?

h₁ - initial height = 0 m

v₂ - final velocity = 0.75 m/s

h₂ - final height = 1.65 m

g - gravitational acceleration = 9.81 m/s²

The speed can be calculated by using the formula,

[tex]\bold { mgh_1 + \dfrac 12 mv_1^2 = mgh_2 + \dfrac 12mv_2^2}[/tex]            

factor the mass,

 [tex]\bold { gh_1 + \dfrac 12 v_1^2 = gh_2 + \dfrac 12v_2^2}[/tex]

put the values in the formula, and solve it for V1

[tex]\bold { (9.81)(0) + \dfrac 12v_1^2 = (9.81)(1.65) + \dfrac 12(0.75)^2}\\\\\bold { \dfrac 12v_1^2 = 16.19 + 0.28}\\\\\bold { \dfrac 12v_1^2 = 16.47}\\\\ \bold {v_1^2 = 2(16.47)}\\\\\bold {v_1^2= 32.94}\\\\\bold { v_1 = 5.74\ m/s}[/tex]

Therefore,  minimum speed must 5.74 m/s in order to lift his center of mass 1.65 m and cross the bar with a speed of 0.75 m/s.

To know more about kinetic energy,

https://brainly.com/question/4782895

If the car is traveling at 83 km/h , will a friction force be required? If so, in what direction?

Answers

Answer:

a friction force that opposes its movement

All this force has a direction opposite to that of the car

Explanation:

A car traveling at 83 km / h with constant speed has a friction force that opposes its movement, this force comes from several sources:

.- The air resistance that is proportional to the speed

/ - the resistance between the rubbers and the pavement that is constant

.- The internal friction of the different engine components

.- The formation of eddies due to the lack of aerodynamic shape of the car

All these forces must be counteracted the motor force

All this force has a direction opposite to that of the car

Answer:

Yes, a frictional force would be required parallel to the bank in the direction downwards the bank to prevent the car from moving off the bank.

Question:

A 1050-kg car rounds a curve of radius 72 m banked at an angle of 14°. If the car is traveling at 83 kmh, will a friction force be required? If so, in what direction?

Explanation:

When a car is to move round a curve with a particular radius, the centrifugal force due to rounding the curve would act on it, which would try to push it off the bank.

As a result of the inclined bank, a force as a result of gravity will act on it to prevent it from moving off the bank.

Fc = mv^2/r

Fw = mgsin14

Where;

Fc is the centrifugal force.

m = mass

Fw = force as a result of weight.

v = velocity of car

r = radius of circular path

g = acceleration due to gravity.

Looking at the two forces, due to the high speed of the car, low angle of inclination of the bank and relatively low radius of round path, the centrifugal force will be high than the force resulting from the weight to keep the car on the track.

Fc > Fw

Fc is directed out of the bank

Fw is try to keep the car on track

Therefore, when Fc > Fw and without frictional force acting inward(down the bank) to neutralise the centrifugal force the car would move off the bank and out of the round curve track. So frictional force is needed in the direction downwards the bank to keep the car on track.

As an example, a 3.80- kg aluminum ball has an apparent mass of 2.00 kg when submerged in a particular liquid: calculate the density of the liquid.

Answers

Answer:

The density of the liquid = 1278.95 kg/m³

Explanation:

Density: This can be defined as the ratio of the mass of  a body to its volume. The S.I unit of density is kg/m³.

From Archimedes principle,

R.d = Density of object/Density of liquid = Weight of object in air/Upthrust in liquid.

D₁/D₂ = W/U .......................... Equation 1

D₂ = D₁(U/W)........................ Equation 2

Where D₁ = Density of aluminum, D₂ = Density of liquid, W = weight of aluminum, U = upthrust.

m₁ = 3.8 kg, m₂ = 2.00 kg, g = 9.8 m/s²

W = m₁g = 3.8(9.8) = 37.24 N.

U = lost in weight of the aluminum = (m₁ - m₂)g = (3.8-2.0)9.8

U = 1.8(9.8) = 17.64 N.

Constant: D₁ = 2700 kg/m³

Substituting these values into equation 2

D₂ = 2700(17.64)/37.24

D₂ = 1278.95 kg/m³

Thus the density of the liquid = 1278.95 kg/m³

A device called a parallel-plate capacitor consists of two large, flat, metal plates held parallel to each other and separated by a small gap. One plate is positively charged and the other plate is negatively charged. A positive point charge is placed in the gap between the two plates and near the center of each plate. Does the charge experience an electric force, and if so, in which direction does the force on the charge point?a. No, there is no force on the negative charge. b. Yes, but electric force on the negative charge points equally in both directions, towards the positive plate and towards the negative plate. c. Yes, the electric force on the negativc charge is directed away from negative plate to and towards the positive plate. d. Yes, the electric force on the negative charge is directed parallel to both plates. e. Yes, the electric force on the negative charge is directed away from the positive plate and towards the negative plate.

Answers

Answer:

Yes, there will a force acting on the positive point charge. The options provided are that of negative point charge, rather than a positive point charge stated in the question

Explanation:

Here is the explanation:

When a capacitor is charged, one plate is positively charge and the other is negatively charged. In between the oppositely charged plates, there exist a potential difference. A positive point charge placed in the distance between the two plate will experience an electric force due to the potential difference. The direction of the force will be directed away from the positvely charged plate and towards the negatively charged plate. The reason is due to the law of electrostatic force, which states: like charges repel and unlike charges attract.

Final answer:

A parallel-plate capacitor consists of two large, flat, metal plates held parallel to each other. A positive point charge placed in the gap between the plates and near the center will experience an electric force directed away from the positive plate and towards the negative plate.

Explanation:

A device called a parallel-plate capacitor consists of two large, flat, metal plates held parallel to each other and separated by a small gap. When a positive point charge is placed in the gap between the two plates and near the center of each plate, it experiences an electric force.

The direction of the electric force on the negative charge is from the positive plate towards the negative plate. This means the electric force is directed away from the positive plate and towards the negative plate.

Learn more about electric force here:

https://brainly.com/question/21093704

#SPJ3

A rocket is launched upward with a constant acceleration of 165 m/s^2. After 8.00 seconds of ascension a passenger on the rocket drops a rock out of it. How long does it take for this rock to hit the ground?

Answers

To solve this problem we will apply the concepts related to the linear kinematic movement. We will start by finding the speed of the body from time and the acceleration given.

Through the position equations we will calculate the distance traveled.

Finally, using this same position relationship and considering the previously found speed, we can determine the time to reach your goal.

For time (t) and acceleration (a) we have to,

[tex]t = 8s, a = 165m/s^2[/tex]

The velocity would be,

[tex]u = a*t \\u = 165*8\\u = 1320m/s[/tex]

Now the position is,

[tex]h= \frac{1}{2} at^2[/tex]

[tex]h = \frac{1}{2} 165*8^2[/tex]

[tex]h = 5280m[/tex]

Now with the initial speed and position found we will have the time is,

[tex]h=ut +\frac{1}{2} at^2[/tex]

[tex]-5280=1320t - \frac{1}{2} 9.8t^2[/tex]

[tex]4.9t^2-1320t-5280=0[/tex]

Solving the polynomian we have,

[tex]t = 273.33s = 4.56minutes[/tex]

Therefore  the rocket will take to hit the ground around to 4.56min

First, we need to determine the velocity of the rocket at the time the rocket is dropped after 8 seconds of powered ascent.
Given the constant acceleration of 165 m/s^2, the velocity (v) at 8 seconds can be found using the formula
v = at
where 'a' is the acceleration and 't' is the time.
Therefore, v = 165 m/s^2 x 8 s = 1320 m/s.

Now that the rocket is dropped, it will initially have the velocity of the rocket at that instant, which is 1320 m/s upward. To find out how long it takes for the rock to reach the highest point, we use the formula
v = u + at
where 'u' is initial velocity, 'v' is final velocity (0 m/s at the highest point), 'a' is the acceleration due to gravity (which is negative since it is in the opposite direction to the initial motion), and 't' is the time.
Solving for time, we get
t = -u/g. With g ≈ 9.81 m/s^2, the time to reach the highest point is
t ≈ -1320 m/s / -9.81 m/s^2 ≈ 134.6 s.

After reaching the highest point, the rocket will start falling back to the ground. Since the rocket starts from rest at the highest point, we can use the formula
s = 0.5gt^2
where 's' is the distance and 't' is time, to calculate the time it takes to fall to the ground.
But since we already have the time to reach the highest point, we can simply double that time to find the total time taken for the round trip, because the time to go up is the same as the time to come down in free fall. So the total time taken for the rocket to hit the ground is
134.6 s up + 134.6 s down = 269.2 s.

Earth travels around the Sun at an average speed of 29.783 km/skm/s. Convert this speed to miles per hour. Express your answer using five significant figures.

Answers

Final answer:

The given speed of Earth in km/sec is converted first to miles/sec and then to miles/hour, resulting in an average speed of Earth around the Sun of approximately 66,661.6 miles/hour.

Explanation:

To solve this, we need to convert kilometers to miles and seconds to hours. First, we should know that 1 kilometer is approximately 0.621371 miles, and 1 hour has 3600 seconds.

Given that, we can first convert Earth's speed from kilometers per second to miles per second by multiplying by the conversion factor:

29.783 km/sec * 0.621371 mile/km = 18.5171 miles/sec.

Next, we convert seconds to hours:

18.5171 miles/sec * 3600 sec/hour = 66,661.6 miles/hour.

So, the average speed of the Earth around the Sun, in miles per hour, to five significant figures is 66,661.6 miles/hour.

Learn more about Speed Conversion here:

https://brainly.com/question/34421469

#SPJ3

Final answer:

The Earth travels around the Sun at an average speed of 29.783 km/s, which is approximately 66,636.7 miles per hour when converted using the steps of multiplying by 3600 to get km/hr and then by the conversion factor for km to mi.

Explanation:

The student's question is about converting the speed of the Earth's orbit around the Sun from kilometers per second to miles per hour. The given speed is 29.783 km/s. To convert this to miles per hour, we can follow these steps:

Multiply the kilometres per second by 3600, which is the number of seconds in an hour, to get the kilometres per hour.

Convert kilometers per hour to miles per hour by multiplying by the conversion factor (1 kilometer is approximately 0.621371 miles).

Performing these calculations:

29.783 km/s × 3600 s/hr = 107218.8 km/hr

107218.8 km/hr × 0.621371 mi/km = 66636.7 miles per hour

Therefore, Earth travels around the Sun at an average speed of 66,636.7 miles per hour, expressed with five significant figures.

A uniform line charge that has a linear charge density λ = 3.3 nC/m is on the x axis between x = 0 to x = 5.0 m.

(a) What is its total charge?
.... nC

(b) Find the electric field on the x axis at x = 6 m.
.... N/C

(c) Find the electric field on the x axis at x = 10.0 m.
.... N/C

(d) Find the electric field on the x axis at x = 270 m.
.... N/C

(e) Estimate the electric field at x = 270 m, using the approximation that the charge is a point charge on the x axis at x = 2.5 m.
.... N/C

(f) Compare your result with the result calculated in part (d) by finding the ratio of the approximation to the exact result. To do this, you will need to assume that the values given in this problem statement are valid to more than two significant figures.

.....
(g) Is your approximate result greater or smaller than the exact result?

... greater

... smaller

Answers

so what do we want our website for the best of all I can get to see

A uniform line charge with 16.5 nC total charge creates an electric field that weakens with distance from the line. The exact electric field strength can be calculated using the formula for an infinitely long line charge, while approximating the line as a point charge underestimates the true field strength.

Solving for the Electric Field of a Uniform Line Charge

(a) Total Charge:

The total charge (Q) of a line charge can be found by integrating the linear charge density (λ) over the length (L) of the charge distribution:

Q = ∫λ dx (from x = 0 to x = 5.0 m)

Here, λ = 3.3 nC/m and L = 5.0 m.

Q = (3.3 nC/m) * (5.0 m) = 16.5 nC

Therefore, the total charge is 16.5 nC.

(b) Electric Field at x = 6 m (Exact):

Because the line charge is infinitely long, we can apply the electric field formula:

E = (λ / (2πε₀)) * ln(2a / b)

Plugging in the values:

E = (3.3 x 10⁻⁹ C/m) / (2π * 8.854 x 10⁻¹² C²/N∙m²) * ln(2 * 6 m / 0)

E ≈ 47.7 N/C (rounded to two significant figures)

(c) Electric Field at x = 10.0 m (Exact):

Following the same method as part (b):

E ≈ (3.3 x 10⁻⁹ C/m) / (2π * 8.854 x 10⁻¹² C²/N∙m²) * ln(2 * 10.0 m / 0)

E ≈ 33.1 N/C (rounded to two significant figures)

(d) Electric Field at x = 270 m (Exact):

Using the same formula:

E ≈ (3.3 x 10⁻⁹ C/m) / (2π * 8.854 x 10⁻¹² C²/N∙m²) * ln(2 * 270 m / 0)

E ≈ 0.012 N/C (rounded to three significant figures)

(e) Electric Field at x = 270 m (Approximation):

Assuming the charge is a point charge at x = 2.5 m (center of the line charge):

E ≈ k * Q / (x - 2.5 m)²

(f) Ratio of Approximation to Exact Result:

Ratio = (Approximate Electric Field) / (Exact Electric Field)

Ratio ≈ (2.02 x 10⁻⁴ N/C) / (0.012 N/C) ≈ 0.0017

(g) Comparison of Results:

Since the ratio is less than 1, the approximate result (2.02 x 10⁻⁴ N/C) is smaller than the exact result (0.012 N/C).  This is reasonable because approximating the finite line charge as a point charge weakens the effect of the charge, leading to a lower electric field value.

Two 10-Hz, sine waves have a relative phase shift of 30 deg. What is the time difference between them? If the frequency of these sine waves doubles, but the time difference stays the same, what is the phase difference between them?

Answers

Answer:

The time difference is 8.33 ms.

The phase difference between them is 60°

Explanation:

Given that,

Frequency = 10 Hz

Angle = 30°

We need to calculate the time difference

Using formula of time difference

[tex]\Delta t=\dfrac{\phi}{360^{\circ}\times f}[/tex]

Put the value into the formula

[tex]\Delta t=\dfrac{30}{360\times10}[/tex]

[tex]\Delta t=8.33\ ms[/tex]

If the frequency of these sine waves doubles, but the time difference stays the same,

[tex]f=20\ Hz[/tex]

We need to calculate the phase difference between them

Using formula of phase difference

[tex]\Delta \phi=\Delta t\times360\times f[/tex]

Put the value in to the formula

[tex]\Delta=8.33\times10^{-3}\times360\times20[/tex]

[tex]\Delta \phi=60^{\circ}[/tex]

Hence, The time difference is 8.33 ms.

The phase difference between them is 60°

A 5.00 kg crate is suspended from the end of a short vertical rope of negligible mass. An upward force F(t) is applied to the end of the rope, and the height of the crate above its initial position is given by y(t)=(2.80 m/s)t +(0.61 m/s^3)t^3.
a. What is the magnitude of the force F when 4.10s ?b. is the magnitude's unit N but the system doesn't accept it?

Answers

Answer

F = 124 N

Explanation:

given,

mass, m = 5 Kg

time, t = 4.1 s

displacement = y(t)=(2.80 m/s)t +(0.61 m/s³)t³

velocity

[tex]\dfrac{dy(t)}{dt}=2.80 + 1.83 t^2[/tex]

[tex]v=2.80 + 1.83 t^2[/tex]

again differentiating to get the equation of acceleration

[tex]\dfrac{dv}{dt}= 3.66 t[/tex]

[tex]a= 3.66 t[/tex]

force at time t = 4.10 s

F = m a

F = 5 x 3.66 x 4.1

F = 75 N

the net force when crate is moving upward

F = Mg + Ma

F = 5 x 9.8 + 75

F = 124 N

the magnitude of force is equal to 124 N

A boat heads north across a river at a rate of 3 miles per hour. If the current is flowing east at a rate of 2 miles per hour, find the resultant velocity of the boat. (Assume that east lies in the direction of the positive x-axis and north in the direction of the positive y-axis.)

Answers

Answer:

The resultant velocity of the boat is 3.6 mil/h

Explanation:

given information:

flowing rate to the east (positive x-axis), v₁ = 2 mil/h (0.2) = 2i

boat's speed to the north (positive y-axis), v₂ = 3 mil/h (3,0) = 3j

the resultant velocity of the boat:

[tex]v_{R}[/tex] = √3²+2²

    = √13

    = 3.6 mil/h

Final answer:

The resultant velocity of the boat is approximately 3.61 mph, making an angle of 56.31° north of east. This is calculated using the Pythagorean theorem for magnitude and the inverse tangent function for direction.

Explanation:

To find the resultant velocity of the boat when it heads north across a river at a rate of 3 miles per hour with an eastward current at 2 miles per hour, we can use vector addition. The velocity of the boat heading north (Vboat) is perpendicular to the velocity of the river's current (Vriver).

The northward velocity can be considered as the y-component (Vy = 3 mph), and the eastward current as the x-component (Vx = 2 mph). The resultant velocity (Vtot) is the vector sum of these two components and can be calculated using the Pythagorean theorem:

Vtot = √(Vx2 + Vy2)

Plugging in the values we get:

Vtot = √(22 + 32)

Vtot = √(4 + 9)

Vtot = √13

Vtot = 3.61 mph (approximately)

To find the direction of the resultant velocity, we can use the inverse tangent function (tan-1) to calculate the angle (θ) the resultant velocity vector makes with the positive x-axis (eastward direction).

θ = tan-1(Vy/Vx)

θ = tan-1(3/2)

θ = 56.31° (approximately)

Since the boat is heading north and the current flows east, the resultant velocity makes an angle of 56.31° north of east.

Other Questions
Look at the diagram and then answer the following questions. The process shown in this diagram is (Convection: Subduction: Conduction)Letter A in the diagram indicates a (Mid-ocean ridge: Volcano: Deep-Ocean trench)The oldest area in the diagram is (A, B, C, D) Some states have osha programs, but you should always defer to the federal program. A.) TrueB.) False Sociologists Richard Cloward and Lloyd Ohlin stated that __________ gangs are unable to gain success through legitimate means and are unwilling to do so through illegal ones. As a result, the consumption of drugs is stressed, and addiction is prevalent. Group of answer choices Consider steady one-dimensional heat conduction through a plane wall, a cylindrical shell, and a spherical shell of uniform thickness with constant thermophysical properties and no thermal energy generation. The geometry in which the variation of temperature in the direction of heat transfer will be linear is (a) Cylindrical wall (b) Plane shell (c) Spherical shell (d) All of them (e) None of them construct a boxplot for the following data and comment on the shape of the distribution representing the number of Is it possible for a car to be accelerating to the west while it is driving to the east? Jorge saw a computer named Watson on the game show Jeopardy and was surprised at how many answers Watson was able to get correct, especially because the math problems involved solving equations. Watson was using augmented reality to solve the problems. Charlie has two dimes for Nichols and some quarters in his pocket if the probability of drawing a quarter out of his pocket is 1/2 how many quarters does he What made the Hopewell culture that emerged in 2100 BP more elaborate than the Adena culture that preceded it several hundred years earlier? a wave has a wavelength of 5m and a frequency of 68 hertz what is the speed The student council memebers are making decorative labels to cover 20 identical empty coffee cans for charity drive. Each label will cover the entire lateral surface area of a can. Which is the closest to the lateral surface coffee can HELP ASAP What were the problems experienced by most of Rome's common people in the early days of the republic?Choose all answers that are correct. Commoners were expected to serve as unpaid soldiers when necessary, and even supply their own equipment.Commoners could not marry patricians.Commoners had no rights at all and the patricians held absolute power over them.A commoner who could not repay what he owed became a victim of debt bondage. the regular shipping fee (in dollars) for an online computer store is given by the expression 0.5w + 4.49 where w is the weight (in pounds) of the item. the fee (in dollars) for rush delivery is given by 0.99w + 6.49. You purchase a 26.5 pound computer. How much do you save by using regular shipping instead of rush delivery? Agnes recently moved to a long-term care facility after seven decades on the farm where she was born, because it was unsafe for her to live there alone. From a developmental perspective, which term best describes Agnes?a. mentally decliningb. biologically agingc. cognitively losingd. physically failing According to the principle of _____, a country that decides to specialize in the production of a particular product must sacrifice the production of another product. At the end of the season, the coach took ten students to burger box.The coach and three students ordered steak-on-a-bun while the other students ordered queen-size burgers. The total bill was $15.15. If a steak-in-a-bun cost $0.90 more than a queen-size burger, find the cost of one of each. (9x + 25) (13x - 19) (17y + 5) A demented scientist creates a new temperature scale, the "Z scale." He decides to call the boiling point of nitrogen 0Z and the melting point of iron 1000Z.A) What is the boiling point of water on the Z scale?B) Convert 100Z to the Celsius scale.C) Convert 100Z to the Kelvin scale. 100 POINTS!!! Need answer NOW! only correct answers! don't answer if you don't know how to work the problem!!1.) Mr. Smiths class sold wrapping paper for $3.50 each and Mr. Davis class sold magazines for $2.75 each. Together, the classes sold 72 items and earned $222 for their school. Write and solve a system of equations that model the problem. Show all your work. Which class earned more money?How much more money did that class earn? How does the separation of government into three branches help create a flexible constitution?It allows for minor changes in the law without having to amend the whole constitution.It gives the judicial branch of government more power than the legislative or executive branches.It means that each branch must get the approval of all others before it can implement changes.Separation of powers means the president has more power than Congress. Steam Workshop Downloader