True or False. The spin quantum number (ms) describes the orientation of the spin of the electron. The magnetic quantum number (ml) describes the the size and energy associated with an orbital. An orbital is the path that an electron follows during its movement in an atom. The angular momentum quantum number (l) describes the orientation of the orbital. The principal quantum number (n) describes the shape of an orbital.

Answers

Answer 1

The spin quantum number (ms) describes the orientation of the spin of the electron: TRUE

The magnetic quantum number (ml) describes the size and energy associated with an orbital. An orbital is the path that an electron follows during its movement in an atom: FALSE

The angular momentum quantum number (l) describes the orientation of the orbital: FALSE

The principal quantum number (n) describes the shape of an orbital: FALSE

Explanation:

The magnetic quantum number (ml) - The number of orbitals and the orientation within a subshell is determined.  The orbital angular momentum quantum number (l) - The shape of an orbital is determined.The principal quantum number (n) - The energy of an electron and the distance of the electron from the nucleus is described.
Answer 2
Final answer:

The statement contains mixed truths and falsehoods. The spin quantum number describes the orientation of electron spin, the magnetic quantum number pertains to orbital orientation, and the angular momentum quantum number concerns orbital shape, while the principal quantum number describes orbital size and energy.

Explanation:

The statement is false. The spin quantum number (ms) does describe the orientation of the spin of the electron, either up or down. The magnetic quantum number (ml) describes the orientation of the orbital in space. An orbital is defined as a region in space where there's a high probability of finding an electron, not their path. The angular momentum quantum number (l) determines the shape of the orbital. The principal quantum number (n) describes the size and energy level of an orbital.

Learn more about Quantum Numbers here:

https://brainly.com/question/35385397

#SPJ6


Related Questions

In which one of the following circumstances could mechanical energy not possibly be conserved, even if friction and air resistance are absent?
A car moves down a hill, its velocity continually increasing alongthe way.
A car moves up a hill at a constant velocity.
A car moves along level ground at a constant velocity.
A car moves up a hill, its velocity continually decreasing alongthe way.

Answers

Answer:

A car moves up a hill at a constant velocity

Explanation:

Since the velocity is constant, the speed is also constant and so is the kinetic energy. However, total mechanical energy is sum of gravitational potential energy and kinetic energy, and the car is moving up the hill so its potential energy rises.

Thus, in the circumstances described the mechanical energy cannot be conserved.

The correct answer is A car moving up the hill with constant velocity.

Julie runs 2 miles every day after school because it reduces the stress she feels from schoolwork. Julie's running habit is maintained by a ________ reinforcer.

Answers

Answer:

negative

Explanation:

The term reinforce means to strengthen, and is used in psychology to refer to any stimulus which strengthens or increases the probability of a specific response.

Negative Reinforcement  can be seen as the act of taking something negative away in order to increase a response.

Julie runs 2 miles every day after school because it reduces the stress (negative) she feels from school work (in order to increase her response in her school work).

A falling object of weight 10 N encounters 10 N of air resistance. The net force on the object is____________.

Answers

An object of weight 10 N that is falling on the ground, and it experiences a 10 N air resistance, then the net force on the object will be 0 N.

What is Force?

A force in physics is an input that has the power to change an object's motion.

A mass-containing object's velocity can vary, or accelerate, as a result of a force. Intuitively, a push or a pull can also be used to describe forces. Being such a vector quantity, a force does have magnitude and direction. The SI unit metric newton is used to measure it (N). The letter F stands for force.

According to Newton's second law's original formulation, an object's net force is equal to the speed that its momentum is changing over time.

As per the given information in the question,

Weight of the object = 10 N

Friction due to air resistance = 10 N

Then, the net force will be,

10 N - 10 N = 0 N

Therefore, the net force will be 0 N.

To know more about Force:

https://brainly.com/question/13191643

#SPJ5

The net force on the object is zero.

When an object is falling, it experiences two main forces: gravity (its weight) pulling it downward and air resistance pushing upward. In this case, the object has a weight of 10 N (newtons), which is a force acting downward due to gravity, and it encounters 10 N of air resistance, which is a force acting upward against the motion of the falling object.

To find the net force on the object, you need to calculate the difference between the two forces:

Net Force = Weight - Air Resistance

Net Force = 10 N - 10 N

Net Force = 0 N

So, the net force on the object is 0 N. This means that the forces of gravity and air resistance are equal in magnitude and opposite in direction, resulting in a net force of zero. In this situation, the object is in a state of dynamic equilibrium, and its velocity remains constant (it doesn't accelerate further).

Learn more about net force here:

https://brainly.com/question/14361879

#SPJ3

As a way of determining the inductance of a coil used in a research project, a student first connects the coil to a 9.7 V battery and measures a current of 0.742 A. The student then connects the coil to a 27.3 V(rms), 51.1 Hz generator and measures an rms current of 0.429 A. What is the inductance?

Answers

Answer:

L = 0.194 H

Explanation:

given,

Voltage = 9.7 V

current = 0.742 A

R = 9.7 V / 0.742 A

R = 13.07 Ohms.

the A.C. impedance of the inductor, like this:

Z = V / I

Z = 27.3 V / 0.429 A

Z = 63.64 Ohms.

now,

inductive reactance, X_L

[tex]X_L = \sqrt{Z^2 - R^2}[/tex]

[tex]X_L = \sqrt{63.64^2 - 13.07^2}[/tex]

[tex]X_L =62.28\ \Omega[/tex]

[tex]X_L = 2\pi f \times L[/tex]

[tex]L = \dfrac{X_L}{2\pi f}[/tex]

[tex]L = \dfrac{62.28}{2\pi \times 51.1}[/tex]

L = 0.194 H

You have purchased a new 20-pin power supply to replace one that failed. However, the motherboard only has a 24-pin connector. What should you do?

Answers

This question is incorrect.The correct question is here

You have purchased a new 24-pin power supply to replace one that failed. However, the motherboard only has a 20-pin connector. What should you do?

Answer:

To solve this problem you should plug the 24-pin power supply into the motherboard, as your mother board has 20 pin you leave pins 11, 12, 23, and 24 on the motherboard unconnected.

I have attached a picture from which you can see that there are pins for same working

A sound system is being set up in a gazebo in a park. It needs to produce music so that everyone can hear it. How much power would the speakers need to produce in order for the intensity at 5 meters away to be 1 x 10^-8 W/m^2? (assume the shape of the propagation of the sound wave is a hemisphere)
1.87 x 10^-7 W
1.57 x 10^-6 W
1.14 x 10^-6 W
2.46 x 10^-7 W

Answers

Answer:

Power, P=1.57×[tex]10^{-6}[/tex] Watt

Explanation:

Given

Intensity, I=1×[tex]10^{-8}[/tex] W/m²

Distance, r=5 meter

Considering the hemispherical space with radius 5 meter centered on the speaker. Speaker emits sound wave continuously with Power P. Intensity I is constant throughout the space and defined as power per unit area.

I=[tex]\frac{P}{A}[/tex]

so, P=I×A

where A is the area of shape of propagation.

since ,shape of propagation is hemispherical

so, A=2×p×r²=2×3.14×5×5=157 m²

P=1×[tex]10^{-8}[/tex]×157

P=1.57×[tex]10^{-6}[/tex] Watt

Two neutral metal spheres on wood stands are touching. A negatively charged rod is held directly above the top of the left sphere, not quite touching it. While the rod is there, the right sphere is moved so that the spheres no longer touch. Then the rod is withdrawn. Afterward, what is the charge state of each sphere? Use charge diagrams to explain your answer.

A. Both the spheres are neutral.
B. The left sphere is negatively charged, the right sphere is charged positively.
C. The right sphere is negatively charged, the left sphere is charged positively.
D. Both the spheres are charged positively.
E. Both the spheres are charged negatively.

Answers

Answer:

The right sphere is negatively charged, the left sphere is charged positively.

Explanation:

When a negatively charged rod is held above the top of left sphere, the rod will attract positive charges and repel negative charges. As the sphere are initially touching each other so positive charges from the both spheres will moves toward the rod. When we separate the spheres positive charges from right sphere have already moved toward the rod i.e. left sphere, creating a deficiency of positive charges in the right sphere and excessiveness of positive charges in left sphere , hence the right sphere will remain negatively charged and left sphere will remain positively charged.

The multi-link mechanism in the Variable Compression Turbo Engine _____, thus varying the compression ratio.

A. Adjusts how far down the piston travels
B. Can change one individual piston's operation independent of the other three
C. Acts like a fixed-length connecting rod

Answers

Answer:

A. Adjusts how far down the piston travels

Explanation:

This type of engine changes the possition of the piston in order to modify the compression chamber volume and therefore the compression ratio of the engine. The volume of the chamber is proportional to the run of the piston (how far down the piston travels)

This engine is used to achive the optimal compression rate in each individual stage.

The multi-link mechanism in a Variable Compression Turbo Engine adjusts the piston travel to vary the compression ratio, providing efficient operation under different conditions but does not change individual pistons independently.

The multi-link mechanism in the Variable Compression Turbo Engine adjusts the angle of the connecting rods, which in turn adjusts how far down the piston travels in the cylinder. This adjustment changes the volume of the cylinder when the piston is at the top of its stroke, thus varying the compression ratio. The multi-link mechanism does not act like a fixed-length connecting rod nor can it change one individual piston's operation independent of the others, as all pistons in a multi-cylinder engine are generally interconnected and move synchronously.

By varying the compression ratio, the engine can operate efficiently under a variety of conditions, offering more power when needed or improving fuel efficiency when less power is required. This mechanism is a sophisticated mechanical linkage that transforms the linear motion of the pistons into the rotary motion of the crankshaft, similar to the operation of conventional connecting rods, but with the added capability of adjusting the compression ratio.

why doesnt the moon get pulled into the sun

Answers

Answer:

The moon does not get pulled into the sun because of gravitational pull.

Explanation:

Gravitational pull is a force that pulls things down or into i guess you can say. Like are orbit, all of the planets (even the dwarf planet "pluto") are circling around are sun but we have things called moons that circle are planets. Are moon is orbiting us like we (are earth) are orbiting the sun. So to get into a little more detail, i will add that we circle the sun or the moon circles us because the action of earth pulling away from the suns gravitational pull is causing it to either rotate or revolve.So we are stuck in the gravitational force of the sun and the moon is stuck in ares. But as someone who LOVES astronamy will say that i watched a video about are earth, sun, and moon and it said that each year are moon is slowly pulling away from the earth. sooner or later we might not have a solar or lunar eclipse anymore.

Answer:

But the path of the Moon is always concave towards the Sun; the gravitational force exerted by the Sun on the Moon is always greater than the pull of the Earth on the Moon

Explanation:

A fan connected to a 120-volt electrical system by an extension cord was worn through and exposed the bare, energized conductor, which made contact with the ladder. The ground wire was not attached to the male end of the cord's plug. When the energized conductor made contact with the ladder, the path to ground included the worker's body, resulting in death. What contributed to the electrocution?

Answers

Answer:

The worker completed the circuit.

Explanation:

Thinking process:

Electricity is the flow of electrons in a circuit. There is one condition for the electrons to flow - the completion of a circuit. In order for that to be established, there must be a side with low electron concentration or affinity for electrons.

The earth has an infinite affinity for electrons. Thus, earth wires are used to channel an excess amount of electrons there. This prevents the short circuiting injuring a person. Hence, a three-pin plug.

Because there was not insulation, like rubber, an alternative pathway could not be found for electrons. Hence the worker was electrocuted as the electric current passed through him.

Final answer:

The electrocution occurred due to a lack of proper safety measures, specifically an improper grounding connection. When the bare, energized conductor of the fan connected with the ladder, the electrical current sought the path of least resistance to ground which included the worker's body.

Explanation:

The factors contributing to the fatal electrocution in this scenario are mainly faulty or inadequate safety measures and the behavior of electricity. Electricity always seeks the path of least resistance to the ground and in the absence of a proper ground wire connection, the electricity from the exposed conductor of the extension cord sought alternative grounding routes, in this case, through the worker's body.

Thermal and shock hazards are two primary dangers of electricity. A thermal hazard can cause fires due to excessive electric power resulting in unwanted thermal effects. A shock hazard is where electric current passes through a person, potentially causing harm ranging from a mild shock to death.

The system lacked a vital safety feature, which is a functioning ground connection. A three-wire system that includes live, neutral, and ground wires helps to avoid such scenarios. With a proper ground connection, any fault currents would be safely directed to the ground, and a circuit breaker would usually trip, cutting off the electricity. In this case, the lack of a proper ground connection contributed to the fatal electrocution.

Learn more about Electrical Safety here:

https://brainly.com/question/34518143

#SPJ3

A horse draws a sled horizontally across a snow-covered field. The coefficient of friction between the sled and the snow is 0.135, and the mass of the sled, including the load, is 195.9kg. If the horse moves the sled at a constant speed of 1.785m/s, what is the power needed to accomplish this?

Answers

Answer:

P = 462.62 watts

Explanation:

The power needed to accomplish this can be calculated how

P = Fv

    Where F:  The force exerted by the horse

                v:  velocity

The force exerted by the horse is against friction force; how the movement is with constant velocity these forces must be equals, then

Fr = μN

    =μmg

    = (0.135)(195.9)(9.8)

    = 259.17 N

And the power is

P = (259.17)(1.785)

P = 462.62 watts

The power needed to accomplish this is 462.62 watts.

What is the coefficient of friction?

It is defined as the numerical value that indicates the amount of friction present between the surfaces of two bodies. The lower the coefficient of friction the lower the friction between the surfaces and the higher coefficient of friction the higher the friction force between them.

We know the:

P = F×v

Where P is the power needed to accomplish this.

F = force exerted by the horse

v = velocity of the horse.

For F = [tex]\rm \mu N[/tex]

[tex]\mu = 0.135[/tex]

N = mg ⇒ 195.9×9.8   ( m= 195.9 kg and g = 9.8 [tex]\rm m/sec^2[/tex])

N = 1919.82 Newtons

F = 0.135×1919.82 ⇒ 259.1757 Newtons

Now P = F×v ⇒259.1757×1.785

P = 462.62  Watts

Thus, the power needed to accomplish this is 462.62 watts.

Learn more about the coefficient of friction here:

https://brainly.com/question/13828735

Scientists who wished to study the metabolic function of cells with balanced translocations while preventing cell replication would be best served by arresting the cells during which phase of the cell cycle?

Answers

Answer:

Interphase.

Explanation:

interphase

When scientists were to prevent cell duplication, they would have to interrupt the division of cells (mitosis). Interphase is the stage of the cell life cycle that occur in between cell dividing stages.

It is during this phase that preventing cell replication would be best served by arresting the cells.

A length of copper wire has a resistance 44 Ω. The wire is cut into three pieces of equal length, which are then connected as parallel lengths between points A and B. What resistance will this new "wire" of length L0 3 have between points A and B? Answer in units of Ω.

Answers

Answer:

[tex]\frac{R}{1} = \frac{44}{9}\ohm[/tex]

Explanation:

Let us imagine that there are three wire of length equal length having equal resistances each of 44/3 Ω

Now connect these wires in parallel to so that their equivalent resistance is R.

then

[tex]\frac{1}{R} = \frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}[/tex]

[tex]\frac{1}{R} = \frac{3}{44}+\frac{3}{44}+\frac{3}{44}[/tex]

[tex]\frac{1}{R} = \frac{9}{44}[/tex]

⇒[tex]\frac{R}{1} = \frac{44}{9}\ohm[/tex]

Answer:

4.89 Ω

Explanation:

we know that resistance is directly proportional to length. hence as the wire is cut in three pieces, the resistance of each piece becomes one-third of the original resistance of the wire.

[tex]R[/tex] = Resistance of wire = 44 Ω

[tex]r[/tex] = resistance of each piece

Resistance of each piece  is given as

[tex]r = \frac{R}{3}\\r = \frac{44}{3}[/tex]

The three pieces are connected in parallel,

[tex]R_{p}[/tex] = Resistance of parallel combination of three pieces

Resistance of parallel combination is given as

[tex]\frac{1}{R_{p}}= \frac{1}{r} +  \frac{1}{r} +  \frac{1}{r} \\\frac{1}{R_{p}}= \frac{3}{r}\\R_{p}= \frac{r}{3}\\R_{p} = \frac{\frac{44}{3} }{3}\\R_{p} = \frac{44}{9} \\R_{p} = 4.89 ohm[/tex]

What would happen to Earth if ocean floor were created at divergent boundaries at a faster rate than it is destroyed at convergent boundaries?

Answers

Answer:

The Earth would increase in volume

Explanation:

What would happen to Earth if ocean floor were created at divergent boundaries at a faster rate than it is destroyed at convergent boundaries?

Divergent boundaries are boundaries where plates pull away from each other, forming mild earthquakes and volcanoes as magma comes to the surface. Earthquakes are as a result of vibrations travelling within the earth or ocean floors . Volcanoes occur as a result of the eruption of  molten magma from the ocean floor

In divergent boundaries, the plates pull away and and the weakened crust in between collapse leaving more space thereby increasing in volume.

Convergent boundaries are boundaries that pull into each other. mountain chains are formed as the two plates push into each other if they are of the same density.

An adult generates 72 W of power as she pulls a sled forward across a flat snowy surface with a force of 80 N. The adult pulls with this force for 4.5 minutes. What distance does the sled move?

130 m

280 m

240 m

180 m

Answers

Answer:

240 m

Explanation:

Gradpoint

Final answer:

To calculate the distance the sled moves, use the formula Work = Force x Distance and substitute the given values to find the answer as 240 meters.

Explanation:

Power is a physical quantity that represents the rate at which work is done or energy is transferred or converted. Mathematically, power is defined as the amount of energy transferred or converted per unit time. It is typically measured in watts (W), where 1 watt is equivalent to 1 joule per second. In other words, power indicates how quickly work is done or energy is transferred.

To find the distance the sled moves, we can use the formula:

Work = Force x Distance

Given: Power = 72 W, Force = 80 N, Time = 4.5 minutes = 270 seconds

Work = Power x Time = 72 W x 270 s = 19440 J

Distance = Work / Force = 19440 J / 80 N = 243 m

Therefore, the sled moves a distance of 240 meters.

When driving through standing water at high speed water may build up beneath the wheels and cause the vehicle to skid is commonly referred to as:________

Answers

Answer: Hydroplaning

Explanation: Hydroplaning is the skiding of a high speed vehicle when water builds beneath the wheels when driving through standing water.

It is usually caused by factors such as High speed,Standing water,deflated tyres. It is strongly recommended that when driving in standing water a driver should drive at a slow and steady speed and always to ensure that the vehicle tyres are adequately inflated with air,this is one of the causes of vehicular accidents during rainy season or flood.

What is the specific fuel requirement for flight under VFR at night in an airplane?
A) Enough to fly to the first point of intended landing and to fly after that for 45 minutes at normal cruising speed.
B) Enough to complete the flight at normal cruising speed with adverse wind conditions.
C) Enough to fly to the first point of intended landing and to fly after that for 30 minutes at normal cruising speed.

Answers

Answer:

A). Enough to fly to the first point of intended landing and to fly after that for 45 minutes at normal cruising speed

Explanation:

Here are Fuel requirements for flight in VFR conditions

No person may begin a flight in an airplane under VFR conditions unless  there is enough fuel to fly to the first point of intended landing and, assuming normal cruising speed -

During the day, to fly after that for at least 30 minutes; or At night, to fly after that for at least 45 minutes.

Some cities now implement signal lights designed to specifically apply to _____ rather than motorized vehicles.
A) Pedestrians
B) Trucks
C) Bicycles
D) Motorcycles
E) All of the above

Answers

The correct answer is C; Bicycles.

Further Explanation:

In major cities, in the United States, have implemented signal lights specifically designed for bicycle riders. The riders also have their own designated bike lanes in many large cities. Drivers in vehicles, are to give the right of way to people on bicycles.

Bicycle riders are to follow the same laws and laws specifically for the riders or they can face fines and tickets.

Learn more about bicycle laws at https://brainly.com/question/8934107

#LearnwithBrainly

A novice skier, starting from rest, slides down a frictionless 29.0∘ incline whose vertical height is 185 mm. How fast is she going when she reaches the bottom?

Answers

Answer:

Her speed when she reaches the bottom of the incline is 1.90 m/s.

Explanation:

Hi there!

To solve this problem, let´s use the energy conservation theorem:

Initially, the skier is at rest at a height of 0.185 m. Since she is at rest, her kinetic energy will be zero and her gravitational potential energy (PE) will be:

PE = m · g · h

Where

m = mass of the skier.

g = acceleration due to gravity.

h = height.

When she reaches the bottom, the height is zero and then the potential energy will be zero. Since there is no friction, the initial potential energy had to be converted into kinetic energy because the total energy of the skier remains constant, i.e., it is conserved.

Then, the final kinetic energy (KE) of the skier has to be equal to the initial potential energy:

PE = KE

The equation of kinetic energy is the following:

KE = 1/2 · m · v²

Then:

KE = PE

1/2 · m · v² = m · g · h

1/2 · m · v² = m · 9.8 m/s² · 0.185 m

v² = 2 · 9.8 m/s² · 0.185 m

v = 1.90 m/s

Her speed when she reaches the bottom of the incline is 1.90 m/s.

Antoinette was diagnosed with hypertension, a noncommunicable disease in which her blood pressure is higher than normal. What is the most likely explanation for why she is hypertensive? She was obese and had a diet high in salt intake. She did not wash her hands enough. She was bitten by a mosquito. She was never vaccinated against hypertension.

Answers

Answer:

She was obese and had a diet high in salt intake.

Explanation:

higher blood pressure is condition known as hypertension which is the main cause of many heart problems which can be life threatening. In obese people. high level of fats inside the blood vessels which can cause blockage inside and can lead to heart problems.

high concentration of salts intake also disturbs the salts concentration in the blood vessels. The disturbance in salt concentration is the function of the kidney to remove it. the increase concentration also  cause increase in blood pressure which leads to hypertension.  

Answer:

She had a diet high in salt intake.

Explanation:

Sodium is medically known to raise blood pressure.

Washing hands and mosquitos are not related to blood pressure.

There is no vaccination against high blood pressure.

Two speakers are spaced 15 m apart and are both producing an identical sound wave. You are standing at a spot as pictured. What would be the frequency produced by the speakers to create perfectly constructive interference? Assume n = 1 and v = 343 m/s
213.04 Hz
256.70 Hz
186.68 Hz
233.14 Hz

Answers

Answer:

213.04

Explanation:

Answer:

The correct answer is option 213.04 Hz

Explanation:

Hello!

Let's solve this!

In this link we will find the image of the problem.

https://smart-answers.com/physics/question14138735

Regarding that image, we will first calculate the distance from my position to S1 and then to S2. Then the difference between these results.

We will use pitagoras.

S1 = [tex]\sqrt{10^{2}+22^{2} }[/tex]

S1 = 24.17

S2 = [tex]\sqrt{5^{2}+22^{2} }[/tex]

S2 = 22.56

The difference will be:

24.17-22.56 = 1.61 m

Constructive interference:

Δr=n*λ

λ=1.61 m (for n = 1)

Then we will calculate the frequency:

f = v / λ

f = (343m / s) /1.61m

f = 213.04 Hz

So the correct answer is option 213.04 Hz

A ski jumper has 1.2 x 10 4 J of potential energy at the top of the ski jump. The friction on the jump slope is small, but not negligible. What can you conclude about the ski jumpers kinetic energy at the bottom of the jump?

Answers

Answer

kinetic energy will be less than 1.2×10^4 J

Explanation:

as some of this potential energy will be used to over come force of friction , hence by law of conservation of energy  , kinetic energy will be less than potential energy at top and will be less than 1.2×10^4 J

Final answer:

The ski jumper's kinetic energy at the bottom of the ski jump will be slightly less than the initial potential energy of 1.2 x 10⁴ J due to the small but non-negligible work done by friction, which converts some of the mechanical energy into other forms like heat and sound.

Explanation:

If a ski jumper has 1.2 x 10⁴ J of potential energy at the top of the ski jump and we take into account that friction is small but not negligible, we can conclude that the ski jumper's kinetic energy at the bottom will be slightly less than 1.2 x 10⁴ J. According to the conservation of energy principle, the sum of potential and kinetic energy in a system should be constant if there is no external work done. However, friction does perform negative work (it removes energy from the system), converting some mechanical energy into heat and sound, and therefore the actual kinetic energy at the bottom will be the initial potential energy minus the energy lost due to friction.

For example, in the given scenario where a ski jumper starts from rest, their initial kinetic energy is zero, and all the energy is in the form of potential energy. As they descend, potential energy is converted into kinetic energy. When friction is present, it will do negative work on the system, represented by a slight decrease in the total mechanical energy by the time the skier reaches the bottom. The kinetic energy of the ski jumper at the bottom would be the initial potential energy minus the work done by friction during the descent.

In a theoretical scenario without friction, the skier's kinetic energy at the bottom would equal their initial potential energy minus zero (since no work is done by friction), resulting in the skier having kinetic energy equal to 1.2 x 10⁴ J at the bottom.

Suppose we imagine the Sun to be about the size of a grapefruit. How big an area would the orbits of the nine planets of the Solar System cover?

Answers

Answer:

size at this scale of the solar system is 10⁸ m²

Explanation:

For this exercise we can use a direct proportions rule or rule of three.

If the radius of the Sun is 7 10⁸ m is equal to the radius of a grapefruit is on average about 5 cm, the radius of the orbit of the plant is x

Mercury

     r1 = 5.8 10¹⁰m

    x = r1 / r_Sum  5

    x = 5.8 10¹⁰/7 10⁸

    x = 82 m

We repeat the same formula with all the radii of the orbit, the results in the table

Numb    name      r_orbit (m)      x (m)         A (m2)

0             Sun          7 10⁸              1                 3.14

1              mercury   5.8 10¹⁰         8.2 10¹       2.0 10⁴

2             venus       1 10¹¹              1.4 10²       6.2 10⁴

3             Earth        1.5 10¹¹           2.1 10²        1.4 10⁵

4             Mars        2.3 10¹¹          3.2 10²        3.2 10⁵

5             Jupiter    7.8 10¹¹          1.1 10³          3.8 10⁶

6            Saturn      1.4 10¹²          2 10³           1.3 10⁷

7            Uranus     2.9 10¹²         4.1 10³         5.3 10⁷

8            Neptune   4.5 10¹²        6.4 10³        1.3 10⁸

9            Pluto         5.9 10¹²        8.4 10³        2.2 10⁸

The area of ​​a circle is

      A = π R²

Mercury

      A = π 80²

      A = 2.0 14 m²

The other values ​​are in the table

The size at this scale of the solar system is 10⁸ m²

An autotransformer is used to reduce the voltage of a 100-kilovolt amp, 480-volt secondary of an isolated type transformer, to supply a 100-kilovolt amp load with 277 volts. What size autotransformer is needed? (Use the co-ratio to determine the size.)

Answers

An autotransformer is a type of electrical transformer that has only one winding, and portions of the same winding act as both the primary and secondary winding sides of the transformer. A 33.9 kVA autotransformer is needed to reduce the voltage of a 100-kilovolt amp, 480-volt secondary of an isolated type transformer to supply a 100-kilovolt amp load with 277 volts, using the co-ratio method.

To determine the size of an autotransformer needed to reduce the voltage of a 100-kilovolt amp, 480-volt secondary of an isolated type transformer to supply a 100-kilovolt amp load with 277 volts, we can use the co-ratio method.

The co-ratio is the ratio of the number of turns on the primary winding to the number of turns on the secondary winding of the transformer.

Secondary voltage: 480 V

Load voltage: 277 V

Load current: 100 kVA

To calculate the co-ratio, we can use the formula:

Co-ratio = Secondary voltage / Load Voltage

Co-ratio = 480 V / 277 V

Co-ratio ≈ 1.734

The co-ratio is approximately 1.734. To determine the size of the autotransformer needed, we can use the formula:

Size of autotransformer = Load kVA / (Co-ratio)²

Size of autotransformer = 100 kVA / (1.734)²

Size of autotransformer ≈ 33.9 kVA

Therefore, a 33.9 kVA autotransformer is needed to reduce the voltage of a 100-kilovolt amp, 480-volt secondary of an isolated type transformer to supply a 100-kilovolt amp load with 277 volts, using the co-ratio method.

To know more about autotransformers:

https://brainly.com/question/34694881

#SPJ12

Final answer:

To supply a 100 kilovolt-ampere load with 277 volts from a 480-volt secondary, an autotransformer that is roughly 1.73 times smaller than the original isolated type transformer is required. The size calculation is derived from the co-ratio (the ratio of primary to secondary voltages), which here equals to 480/277 = 1.73.

Explanation:

The subject in question is regarding the use of an autotransformer, specifically, what size is needed to reduce the voltage from 480 volts to 277 volts in order to supply a 100 kilovolt-ampere load. First, we need to handle the co-ratio. The co-ratio of a transformer is the ratio of primary to secondary voltages, often used to calculate the size of a transformer. In this case the co-ratio would be 480/277 = 1.73.

Utilizing the transformer equation, we can comprehend that the voltage reduction from 480 to 277 volts that undergoes in an autotransformer proposes a comparable reduction in size of the transformer. Based on this, the autotransformer needed should be around 1.73 times smaller than the original isolated type transformer.

As a brief primer on the functioning of the transformers, they operate on the principle of electromagnetic induction and are used in power distribution systems to step-up or step-down the voltages. This allows the efficient transmission of power over long distances and also the provision of the correct voltage levels suitable for different uses.

Learn more about Transformers and Autotransformer Sizing here:

https://brainly.com/question/32456416

#SPJ12

Suppose that a person riding on the top of a freight car shines a searchlight beam in the direction in which the train is traveling.

How does the speed of the light beam relative to the ground compare to the speed of beam when the train is at rest?

Answers

Answer:

same

Explanation:

Acc. to Einstien's postulate of special theory of

Relativity , Velocity of the light beam is same in all frames of references

(a) If the freight car is at rest

The frame we can assumed as Non - inertial frame  of reference s

In the inertial frame of reference , velocity  of the light beam  has its own value as : 3 x 10^8 m/s

(b) If the freight car is moving , the frame we can assumed as  Non -inertial frame of reference    

In thus case also , The velocity of the light beam  will also have  the same value as ; 3 x 108 m/s

What is a geologist’s role in the petroleum industry? stay with the drillers to examine rock and fossils brought to the surface chart information on a well log calculate the distance and direction of movement of the lost vein of ore locate environments in which petroleum forms

Answers

Answer:what is the role of of geologist in the petroleum industry

A. Stay with the drillers to examine rocks and fossils brought to the surface.

B. Chart information on a well log

C. Calculate the distance and direction of movement of the lost vein of ore

D. locate environment in which the petroleum forms

Correct option. Is D locate environment in which petroleum forms

Explanation:

Petroleum geologists are usually linked to the actual discovery of oil and the identification of possible oil deposits or leads. It can be a very labor-intensive task involving several different fields of science and elaborate equipment. Petroleum

geologists look at the structural and

sedimentary aspects of the stratum/strata to identify possible oil traps

Answer: D locate environment in which the petroleum forms

Explanation:

You throw a ball straight up, it peaks out, and then cones back down to you. During this motion, the velocity and acceleration

a) always point in the same direction
b) always point in opposite direction
c) sometimes point in the same direction, and other times point in opposite to each other.
d) depends on the way the ball is thrown
e) depends in the mass of the ball

Answers

Answer:

The answer is C sometimes point in the same direction, and other times point in opposite to each other.

Explanation:

When you throw a ball straight up velocity direction head up to up side but the acceleration points opposite direction due to gravitation of earth. Gr aviation slows down the ball when it goes up, when it reaches the summit and starts to fall down both velocity and acceleration points the same way. The ball speeds up and drops down.

Final answer:

The velocity and acceleration of a ball thrown straight up sometimes point in the same direction and sometimes in opposite directions. On the way up, they are opposite, but when the ball peaks and begins falling, they align in the same direction (downward). Therefore, the correct answer is that they sometimes point in the same direction and other times in opposite directions.

Explanation:

When you throw a ball straight up, it follows a parabolic trajectory due to the influence of gravity. Let's examine the ball's velocity and acceleration throughout its motion:

The ball's velocity is initially positive as it travels upwards after being thrown. When the ball reaches its highest point, its velocity becomes zero as it changes direction.From the moment the ball is released until it hits the ground, the acceleration due to gravity is a constant negative value, directed downward toward the center of the Earth.On the way up, the direction of the ball's velocity (upward) and the direction of acceleration (downward) are opposite. When the ball reaches its peak and starts to fall back down, the velocity (now downward) and the constant acceleration due to gravity (also downward) will be in the same direction.

Therefore, during the motion of the ball, the acceleration does not always point in the same direction as the ball's motion. Instead, the direction of velocity and acceleration are opposite on the ascent and the same on the descent. Hence, our answer to the question is that the velocity and acceleration sometimes point in the same direction, and other times point in opposite to each other.

Which of the following statements are true. (Justify your answer to get credit) (5 points)

1. Mechanical energy is conserved before and after the string is cut.
2. Mechanical energy is conserved before the string is cut.
3. Mechanical energy is conserved after the string is cut
4. Linear momentum is conserved 5. Angular momentum is conserved.

Answers

Answer:

2 & 3

Explanation:

Since they are all vector quantities, if they remain in a closed system where no external force acts on the system, the vector sum of the momentum remains constant.

When there is no loss or gain in the total vector sum of the energy of the system means it's energy is conserved.

if you were to look for a cut on the palmar surface of a dog's leg where would you look?

Answers

Answer:

If you were to look for a cut on the palmar surface of a dog's leg then you should look at the back area of the front leg below the carpus.

Explanation:

Final answer:

To find a cut on the palmar surface of a dog's leg, you would check the underside of the foreleg where the paw pads are located.

Explanation:

If you want to locate a cut on the palmar surface of a dog's leg, you would look at the underside of the dog's foreleg. In humans, the palmar surface refers to the palm of the hand, and similarly, in quadrupeds like dogs, it refers to the analogous area - the bottom of their paws on the forelegs, where dogs have pads that contact the ground. This is analogous to the palm of the human hand although covered with different skin and touch pads.

Water can pile up a short distance above a container's rim due to: a. high capillary action. b. low viscosity. c. low surface tension. d. high surface tension. e. high viscosity.

Answers

Answer: a. high capillary action.

Explanation:

Water can pile up a short distance above a container's rim due to high capillary action. Capillarity is process by which water falls or rise through a narrow capillary tube. The concept allows water to rise to a certain height through the container before dropping.

Other Questions
Rewrite with only sin x and cos x.cos 3xA. cos x - 4 cos x sin2xB. -sin3x + 2 sin x cos xC. -sin2x + 2 sin x cos xD. 2 sin2x cos x - 2 sin x cos x In experimental design, when comparisons are made of groups that have been selected on the basis of their extreme scores, the posttest means of the groups tend to move toward the mean of the entire population from which the extreme groups were selected. This threat to internal validity is called In a Cournot duopoly, we find that Firm 1's reaction function is Q1 = 50 - 0.5Q2, and Firm 2's reaction function is Q2 = 75 - 0.75Q1. What is the Cournot equilibrium outcome in this market?A) Q1 = 20 and Q2 = 60B) Q1 = 20 and Q2 = 20C) Q1 = 60 and Q2 = 60D) Q1 = 60 and Q2 = 20 If you were going to study the effects of certain fertilizer on plant growth, which list of variables would you most likely want to standardize (keep constant)? In the half-life function Q(t)=28550((34)h)(th) Q ( t ) = 28550 ( ( 3 4 ) h ) ( t h ) , what is the half-life, h h , if (34)h=12 ( 3 4 ) h = 1 2 ? A hot air balloon is filled to a volume of 44.5 L at 758 torr. What will be the volume of the balloon if the pressure decreases to 748 torr under constant temperature?A. 45.1 LB. 43.9 LC. 44.5 LD. 49.0 L Diesel engines burn as much as 30% less fuel than gasoline engines of comparable size, as well as emitting far less carbon dioxide gas and far fewer of the other gasses that have been implicated in global warming.(A) of comparable size, as well as emitting far less carbon dioxide gas and far fewer of the other gasses that have(B) of comparable size, as well as emit far less carbon dioxide gas and far fewer of the other gasses having(C) of comparable size, and also they emit far fewer carbon dioxide and other gasses that have(D) that have a comparable size, and also they emit far fewer of the other gasses having(E) that have a comparable size, as well as emitting far fewer of the other gasses having Which of the following would be an example of "silent sabotage"? A. Nat Turner killed a white person during his rebellion. B. Harriet Tubman helped lead slaves to freedom. C. Joseph Taper escaped to Canada and then wrote a letter about his new home. D. With other slaves, Denmark Vesey planned a rebellion. E. A slave on a large plantation slowed down the work pace. Which of the following is needed to apply for a checking account. A. Social Security Number B. Report CardC. Birth Certificate D. Copy of drivers license Many scientists estimate that trans fatty acids offer health benefits similar to those from polyunsaturated and monounsaturated fats. What is the value of x in the equation 5x 3-4x2 The supply of "cash" (paper and coin) is produced by the U.S. Mint and the Bureau of Engraving, but the _________________ controls the distribution of the money to financial institutions.. If (10,3) and (6,31) are twoanchor points on a trend line,then find the equation of theline. What term is used for the controlling of the color temperature of light that the camera will capture? Alana worked hard to make enough money to support herself and afford an apartment in a safe neighborhood. She feels confident and really good about her accomplishments. Recently, she has entered a committed relationship. According to Maslow, Alana is moving through An adventurous stdent stands on top of a spinning chair holding a Jack-o-lantern in each hand (each of which is 5.0 kg) as she extents her arms horizontally. She spins around, making one revolution in 2.0 s. The moment of inertia when her arms are outstretched is 13.0 kgm, and if she brings the Jack-o-lanterns in close to her stomach, the moment of inertia drops to 2.6 kgm?. What is the final angular velocity? (A) 2.5 rev/s (B) 2.5 rad/s (C) 27 rad/s (D) 0.5 rev/s (E) 5.0 rev/s Two partners in a business purchase a parcel of real estate. They will have uneven ownership of the property. They both want their heirs to inherit their respective share upon their death. They should own the property as: What were clans and why were they Important to Quapaw society When the production, transportation, and the sale of a product are controlled by one company it is called a what? Which of the following BEST describes the process of evolution by natural selection? A.a rapid change of the traits of a species over time B. a gradual change of the traits of a species over time C. a rapid change of the traits of an organism over time D. a gradual change of the traits of an organism over time Steam Workshop Downloader