Answer with explanation:
As is the question the answer would be 19 hours, and the key to solving it is in the phrase in 15 more hours, basically what they are saying is that the small pipe takes 15 hours more than both the big and the small to fill the tank. Since both pipes working together can fill the tank in 4 hours we need to add 4 and 15 to solve the problem.
If the question is how many hours would it take to fill the tank using only the big pipe? Then we could solve t for the following equation:
[tex]\frac{1}{4+15} + \frac{1}{t} = \frac{1}{4}[/tex]
Getting as a result: 5.06
Note that the equation is the result of taking the rate of the small pipe (what we solved before), plus the unknown rate of the big one equals the rate of both.
a 100mh inductor is placed parallel with a 100 ohm resistor in the circuit , the circuit has a source voltage of 30 vac and a frequancy of 200 Hz what is the current through the inductor
Answer:
current through the inductor = 0.24 A
Explanation:
given data
inductor = 100mh
resistor = 100 ohm
voltage = 30 vac
frequancy = 200 Hz
to find out
current through the inductor
solution
current through the inductor will be when inductor is place parallel with resistor
across resistor
XL = i2πl
XL = i2π×200×100×[tex]10^{-3}[/tex] = i126.66
so
current through the inductor = [tex]\frac{voltage}{XL}[/tex]
current through the inductor = [tex]\frac{30}{125.66}[/tex]
current through the inductor = 0.24 A
Print a message telling a user to press the letterToQuit key numPresses times to quit. End with newline. Ex: If letterToQuit = 'q' and numPresses = 2, print:
Answer:
Vb.Net
msgbox ("Press "q" twice to quit", msgboxstyle.information)
if char.q = keypress and keypress.count = 2 then
End
End if
Explanation:
The natural water content of a Boston Blue Clay soil sample was found to be 14.6% through oven drying. It has been calculated that the maximum density for the clay will be obtained when the water content of the soil reaches 21.2%. Compute how many grams of water must be added to each 500 grams of Boston Blue Clay (in its natural state) in order to increase the water content to 21.2%.
Answer:
41.87 grams of water content must be added to each 500 grams of Boston Blue Clay (in its natural state) in order to increase the water content to 21.2%
Explanation:
The natural water content in Boston Clay is 14.6%. Thus, in 500 grams of Boston clay, the amount of water, naturally present will be:
Natural Water Content = 14.6% of 500 grams
Natural Water Content = 0.146 x 500 grams
Natural Water Content = 73 grams
Thus, the amount of dry clay will be:
Dry Clay = 500 grams - 73 grams
Dry Clay = 427 grams
Now, the required water content is 21.2%, and thus, the remaining 78.8% will be the dry clay. The mass of dry clay is calculated to be 427 grams.
If, we let 'X' be the total mass of clay and water content after the water content is increased to 21.2%. Then;
427 grams = 78.8% of X
427 grams = (0.788)X
X = 427 grams/0.788
X = 541.87 grams
Now, the mass of water content added will be equal to the difference between the total mass of clay before addition of water content and total mass of clay after addition of water content.
Water content added = X - 500 grams
Water Content Added = 541.87 grams - 500 grams
Water Content Added = 41.87 grams
Print "Censored" if userInput contains the word "darn", else print userInput. End with newline. Ex: If userInput is "That darn cat.", then output is: Censored Ex: If userInput is "Dang, that was scary!", then output is: Dang, that was scary! Note: If the submitted code has an out-of-range access, the system will stop running the code after a few seconds, and report "Program end never reached." The system doesn't print the test case that caused the reported message.
Hi, you haven't provided the programing language in which you need the code, I'll just explain how to do it using Python, and you can apply the same method for any programming language, pseudocode or flowchart.
Answer:
1 userInput = input("Please enter 'userInput':\n")
2 if "darn" in userInput.lower():
3 print("Censored")
4 else:
5 print(userInput\n)
Explanation line by line:
Line one asked for the user input, and store the value in a variable called userInput. Inside the input function, you put some text to indicate to the user to enter something and \n is the new line character. Line two checked if the word "darn" is in the user input, for this, we use the built-in function in. Because we don't know if the user inputs the word "darn" in upper case, lower case or a mix of both we use the method .lower() to change the user input to lowercase and make the validation (Python is case sensitive -> A is not equal to a). Line three prints the word "Censored" if and only if the word "darn" is in userInput.Line fourth allows going to line five if and only if the word "darn" is NOT in userInput.Finally, line five prints the word entered by the user if and only if the word "darn" in NOT in userInput.A multilane highway (two lanes in each direction) is on level terrain. The free-flow speed has been measured at 45 mi/h. The peak-hour directional traffic flow is 1300 vehicles with 6% large trucks and buses and 2% recreational vehicles (f_p = 0.95).If the peak-hour factor is 0.85, determine the highway's level of service.
The level of service of a highway is determined by the volume-to-capacity ratio. Using the provided traffic information, we can calculate the highway's capacity and determine its level of service, which ranges from A to F.
Explanation:The level of service of a highway is determined by the volume-to-capacity ratio (V/C ratio).
Given peak-hour directional traffic flow, vehicle types, peak-hour factor, and free-flow speed, we can calculate the capacity of the highway and determine the level of service.
In this case, we would need to calculate the volume of traffic compared to the highway's capacity to determine the level of service, which can range from A to F.
Write Python expressions using s1, s2, and s3 and operators and * that evaluate to: (a) 'ant bat cod'
To form the string 'ant bat cod', you can concatenate the strings s1, s2, and s3 using the + operator or repeat each string based on the desired repetition using the * operator.
Explanation:Python expressions using s1, s2, and s3 and operators and * that evaluate to: (a) 'ant bat cod'.
s1 + ' ' + s2 + ' ' + s3s1 * 1 + ' ' + s2 * 2 + ' ' + s3 * 3Design a sequential circuit with two D flip-flops A and B, and one input x_in.
(a)When xin = 0, the state of the circuit remains the same. When x_in = 1, the circuit goes through the state transitions from 00 to 01, to 11, to 10, back to 00, and repeats.
(b)When xin = 0, the state of the circuit remains the same. When x_in =1, the circuit goes through the state transitions from 00 to 11, to 01, to 10, back to 00, and repeats.
Answer:
View Image
Explanation:
The question is basically asking you to build a 2-bit asynchronous counter.
What the counter does is it increase it's value by 01₂ every clock pulse. So at 0₂, nothing happens, but at 1₂ it'll count up by 1. It then reset to 00₂ when it overflows.
The design for it is pretty much universal so I kinda did this from memory.
a.) A count-up counter (from 00-11) is simply made by connecting Q' to D, and the output of the previous DFF to the clock of the next one.
b.) A count-down counter (from 11-00) is simply made by using the same circuit as the count-up counter, but you connect Q' to the clock instead of Q.
A cylindrical part of diameter d is loaded by an axial force P. This causes a stress of P/A, where A = πd2/4. If the load is known with an uncertainty of ±11 percent, the diameter is known within ±4 percent (tolerances), and the stress that causes failure (strength) is known within ±20 percent, determine the minimum design factor that will guarantee that the part will not fail.
Answer:
1.505
Explanation:
cylindrical part of diameter d is loaded by an axial force P. This causes a stress of P/A, where A = πd2/4. If the load is known with an uncertainty of ±11 percent, the diameter is known within ±4 percent (tolerances), and the stress that causes failure (strength) is known within ±20 percent, determine the minimum design factor that will guarantee that the part will not fail.
stress is force per unit area
stress=P/A
A = πd^2/4.
uncertainty of axial force P= +/-.11
s=+/-.20, strength
d=+/-.04 diameter
fail load/max allowed
minimum design=fail load/max allowed
minimum design =s/(P/A)
sA/P
A=([tex]\pi[/tex].96d^2)/4, so Amin=
[tex]0.96^{2}[/tex] (because the diameter at minimum is (1-0.04=0.96)
minimum design=Pmax/(sminxAmin)
1.11/(.80*.96^2)=
1.505
It is possible to maintain a pressure of 10 kPa in a condenser that is being cooled by river water entering at 20 °C?
Answer:
Yes, it is possible to maintain a pressure of 10 kPa in a condenser that is being cooled by river water that is entering at 20 °C because this temperature (20 °C) of the external cooling water is less than the saturation temperature of steam which is which is 45.81 °C, and heated by a boiler; as a result of this condition, coupled with the assumption that the turbine, pump, and interconnecting tube are adiabatic, and the condenser exchanges its heat with the external cooling river water, it possible to maintain a pressure of 10 kPa.
While there are many ways to solve this problem, one strategy is to calculate the volume of any metal's unit cell given its theoretical density (Equation 3.8) and atomic weight. What is the volume of the zirconium unit cell in cubic meters?
The volume of a zirconium unit cell, using a theoretical density of 6.52 g/cm³ and an atomic weight of 91.22 g/mol, can be found to be approximately 2.3 x 10-29 m³.
Explanation:To calculate the volume of the zirconium unit cell, we need to know the atomic weight, density, and Avogadro's number. Assuming a theoretical density of 6.52 g/cm³, an atomic weight of 91.22 g/mol, and using Avogadro's number (6.022 x 10²³ atoms/mol), we can use the formula: volume = atomic weight / (density * Avogadro's number).
First, convert the density from g/cm³ to kg/m³, 1 g/cm³ = 1000 kg/m³. So, 6.52 g/cm³ = 6520 kg/m³. Then substitute these values into the formula: volume = 91.22 g/mol / (6520 kg/ m³ * 6.022 x 10²³ atoms/mol) = approximately 2.3 x 10-29 m³.
Learn more about Volume of Zirconium Unit Cell here:
https://brainly.com/question/33304087
#SPJ11
Assume we have already defined a variable of type String called password with the following line of code: password' can have any String value String password ???"; However, because of increased security mandated by UCSD's technical support team, we need to verify that passwo rd is secure enough. Specifically, assume that a given password must have all of the following properties to be considered "secure": It must be at least 7 characters long .It must have characters from at least 3 of the following 4 categories: Uppercase (A-Z), Lowercase (a-z), Digits (0-9), and Symbols TASK: If password is secure, print "secure", otherwise, print "insecure" HINT: You can assume that any char that is not a letter (A-Z, a-z) and is not a digit (0-9) is a symbol. EXAMPLE: "UCSDcse11" would be valid because it is at least 7 characters long (it's 9 characters long), it has at least one uppercase letter (U', 'C', 'S', and 'D'), it has at least one lowercase letter (c', 's', and 'e'), and it has at least one digit (1' and '1') EXAMPLE: "UCSanDiego" would be invalid because, while it is 10 characters long, it only has uppercase and lowercase letters, so it only has characters from 2 of the 4 categories listed Sample Input: UCSDcse11 Sample Output: secure
Answer:
The Java code is given below with appropriate comments for better understanding
Explanation:
import java.util.Scanner;
public class ValidatePassword {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("Enter a password: ");
String password = input.nextLine();
int count = chkPswd(password);
if (count >= 3)
System.out.println("Secure");
else
System.out.println("Not Secure");
}
public static int chkPswd(String pwd) {
int count = 0;
if (checkForSpecial(pwd))
count++;
if (checkForUpperCasae(pwd))
count++;
if (checkForLowerCasae(pwd))
count++;
if (checkForDigit(pwd))
count++;
return count;
}
// checks if password has 8 characters
public static boolean checkCharCount(String pwd) {
return pwd.length() >= 7;
}
// checks if password has checkForUpperCasae
public static boolean checkForUpperCasae(String pwd) {
for (int i = 0; i < pwd.length(); i++)
if (Character.isLetter(pwd.charAt(i)) && Character.isUpperCase(pwd.charAt(i)))
return true;
return false;
}
public static boolean checkForLowerCasae(String pwd) {
for (int i = 0; i < pwd.length(); i++)
if (Character.isLetter(pwd.charAt(i)) && Character.isLowerCase(pwd.charAt(i)))
return true;
return false;
}
// checks if password contains digit
public static boolean checkForDigit(String pwd) {
for (int i = 0; i < pwd.length(); i++)
if (Character.isDigit(pwd.charAt(i)))
return true;
return false;
}
// checks if password has special char
public static boolean checkForSpecial(String pwd) {
String spl = "!@#$%^&*(";
for (int i = 0; i < pwd.length(); i++)
if (spl.contains(pwd.charAt(i) + ""))
return true;
return false;
}
}
Consider a steady flow Carnot cycle with water as the working fluid. The maximum and minimum temperatures in the cycle are 350 and 50 C. The quality of water is 0.891 at the beginning of the heat rejection process and 0.1 at the end. Determine:
(a) the thermal efficiency (how much percent).
(b) the pressure at the turbine inlet, and
(c) the network output
a) Etath,C= %
b) P2=MPa
c) wnet = kJ/kg
Answer:
a) Etath = 48.2 %
b) P2 = 1.195 MPa
c) wnet = 1749.14 KJ/kg
Explanation:
Given:
T1 = T2 = 50 , TL = 50 + 273 = 323 K
T3 = T4 = 350 , TH = 350 + 273 = 623 K
x3 =0.891
x4 = 0.1
Part a
Thermal efficiency (Etath) of carnot cycle is:
Etath = 1 - (TL / TH )
Etath = 1 - (323) / (623) = 48.2 %
Part b
Note:
From A - 4 Table
T1 = 50 C @sat
sf = 0.7038 KJ/kg.K
sfg = 7.3710 KJ/Kg.K
s2 = s3 = sf + x3 * (sfg)
s2 = s3 = 0.7038 + 0.891*7.3710 = 7.271361 KJ/kg.K
Thus,
@ T2 = 350 C ; sg = 5.2114 KJ/kg.K
s2 = 7.271361 KJ/kg.K
s2 > sg@T = 350 C, hence super-heated region.
Use Table A-6
T2 = 350 C
s2 = 7.271361 KJ/kg.K
P2 = 1.195 MPa (using interpolation)
part c
wnet can be calculated by finding the enclosed area on a T-s diagram:
s4= sf + x4*sfg = 0.7038 + 0.1*7.3710 = 1.4409 KJ/kg.K
wnet = (TH - TL)*(s3 - s4)
wnet = (623 - 223) * (7.271361 - 1.4409) = 1749.14 KJ/kg
A quack is a data structure combining properties of both stacks and queues. It can be viewed as a list of elements written left to right such that three operations are possible:
Answer:
Three operations possible in a quack is QUACKPUSH, QUACKPOP and QUACKPULL.
Explanation:
A quack is a data structure combining properties of both stacks and queues. It can be viewed as a list of elements written left to right such that three operations are possible, these include:
QUACKPUSH(x): add a new item x to the left end of the list; QUACKPOP(): remove and return the item on the left end of the list; QUACKPULL(): remove the item on the right end of the list.Elements in the quack are stored in stacks. The component stacks can be accessed only through the standard stack functions PUSH and POP.
Ensure at least ___ distance around fire sprinkler heads, safety showers, eyewash units, and heating and cooling units to ensure proper operation.
90 inches
Explanation:
According to OSHA requirement, the distance around safety showers and eyewash should be between 82-96 inches off the flow. This will allow for maximum diameter of spray.
Learn More
Safety distance around safety showers:https://brainly.com/question/11123362
Keywords: distance, fire sprinkler head, safety showers, eyewash units,heating and cooling units
#LearnwithBrainly
Consider a refrigerator that consumes 320 W of electric power when it is running. If the refrigerator runs only one quarter of the time and the unit cost of electricity is $0.09/kWh, the electricity cost of this refrigerator per month (30 days) is
A. $3.56
B. $5.18
C. $8.54
D. $9.28
E. $20.74
Answer:
B. $5.18
Explanation:
Cost of electricity per kWh = $0.09
Power consumption of refrigerator = 320W = 320/1000 = 0.32kW
In a month (30 days) the refrigerator works 1/4 × 30 days = 7.5 days = 7.5 × 24 hours = 180 hours
Energy consumed in 180 hours = 0.32kW × 180h = 57.6kWh
Cost of electricity of 57.6kWh energy consumed by the refrigerator = 57.6 × $0.09 = $5.18
The electricity cost of the refrigerator per month is approximately $0.65. The correct answer is none of the given options.
Explanation:To calculate the electricity cost of the refrigerator per month, we first need to find out how many kWh it consumes when it is running for one hour. We can do this by converting the power consumption of the refrigerator from watts to kilowatts:
320 W = 0.32 kW
Since the refrigerator runs only one quarter of the time, we can calculate the kWh consumed per month as follows:
0.32 kW * 1/4 * 24 hours/day * 30 days/month = 7.2 kWh/month
Now, we can calculate the cost of electricity using the unit cost of $0.09/kWh:
7.2 kWh/month * $0.09/kWh = $0.648/month
Therefore, the electricity cost of the refrigerator per month is approximately $0.65.
Learn more about Calculating electricity cost of a refrigerator here:https://brainly.com/question/34873905
#SPJ3
If p is a pressure, V a velocity, and a fluid density, what are the dimensions (in the MLT system) of (a) p/, (b) pV, and (c)p/pV2?
Answer:p=ML^-1T^-2
b)PV=MT^-3
c)P/PV^2=T^2L^-2
Explanation:In dimensions,Mass in kg is represented by M
Length is represented by L in meters.
T represent Time in seconds,s.
Pressure=hpg,h=height or depth In m,a=density=kg/m^3
g=acceleration due to gravity,m/s^2
P=hag=mxkg/m^3 xm/s^2=m^2×kg/m^2×s^2=kgm^-1 s^-2=ML^-1T^-2
B)PV=pressure xvelocity
=ML^-1T^-2×distance/time
ML^-1T^-2×L/T=MT^-3
C)p/pv^2=1/V^2=(time/distance)^2=(T/L)^2=T^2L^-2
Explain the differences among sand, silt, and clay, both in their physical characteristics and their behavior in relation to building foundations.
Answer:PHYSICALLY- sand is spherical in shape with large particles up to 0.18g
Silt also contains more of spherical particles with weights around 0.0029g.
Clay contain plate like particles,which are flat or layered. It's particles are generally lower that silt and sand below 0.0029g.
BEHAVIORS Sand particles are coarse and very porous,water can easily penetrate with no particles cohesion,does not retain water, difficult to expand,it is IDEAL FOR BUILDINGS.
Silt particles are also porous with some coarseness and no particles cohesion. retains water and can expand. NOT IDEAL FOR BUILDINGS.
Clay contain particles that are not coarse,they have high cohesiveness,they are not porous as it is difficult for water to penetrate. NOT IDEAL FOR BUILDINGS.
Explanation: Sand particles are coarse,very porous,contains spherical particles with large particles sizes and IDEAL FOR BUILDINGS
Silt particles are also porous, with some coarseness and with little or no particles cohesion, NOT IDEAL FOR BUILDINGS.
Clay soils are not porous water can not easily flow thought it,it is hard when dry and soft when wet. IT IS NOT A GOOD OPTION FOR BUILDINGS.
A sample of coarse aggregate has an oven dry weight of 1034.0 g and a moisture content of 4.0 %. The saturated surface dry weight is 1048.9g and the weight of the aggregate in water is 675.6 g. Determine using phase volume relationships: a) Apparent Specific Gravity (GA) b) Bulk Specific Gravity (GB) c) Bulk Specific Gravity SSD (GB (SSD)) d) Absorption, % e) Bulk Volume
Answer:
Apparent Specific Gravity = 2.88
bulk specific gravity = 2.76
Bulk Specific Gravity SSD = 2.80
absorption = 1.44%
bulk volume = 373.3
Explanation:
given data
oven dry weight A = 1034.0 g
moisture content = 4.0 %
saturated surface dry weight B = 1048.9 g
weight of the aggregate in water C = 675.6 g
solution
we get here Apparent Specific Gravity that is express as
Apparent Specific Gravity = [tex]\frac{A}{A-C}[/tex] ..........1
put here value
Apparent Specific Gravity = [tex]\frac{1034}{1034-675.6}[/tex]
Apparent Specific Gravity = 2.88
and
now we get bulk specific gravity that is
bulk specific gravity = [tex]\frac{A}{B-C}[/tex] ...................2
put here value
bulk specific gravity = [tex]\frac{1034}{1048.9-675.6}[/tex]
bulk specific gravity = 2.76
and
now we get Bulk Specific Gravity SSD
Bulk Specific Gravity SSD = [tex]\frac{B}{B-C}[/tex] ............3
Bulk Specific Gravity SSD = [tex]\frac{1048.9}{1048.9-675.6}[/tex]
Bulk Specific Gravity SSD = 2.80
and
now absorption will be here as
absorption = [tex]\frac{B-A}{A}[/tex] × 100% ................4
absorption = [tex]\frac{1048.9-1034}{1034}[/tex] × 100%
absorption = 1.44%
and
last we get bulk volume that is
bulk volume = [tex]\frac{weight\ displce\ water}{density\ water }[/tex]
bulk volume = [tex]\frac{1048.9-675.6}{1}[/tex]
bulk volume = 373.3
The lattice constant of a simple cubic lattice is a0.
(a) Sketch the following planes:
(i) (110),
(ii) (111),
(iii) (220), and (iv) (321).
(b) Sketch the following directions:
(i) [110],
(ii) [111],
(iii) [220], and (iv) [321]
Answer:
A)The sketches for the required planes were drawn in the first attachment.
B)The sketches for the required directions were drawn in the second attachment.
To draw a plane in a simple cubic lattice, you have to follow these instructions:
1- the cube has 3 main directions called "a", "b" and "c" (as shown in the first attachment)
2- The coordinates of that plane are written as: π:(1/a₀ 1/b₀ 1/c₀) (if one of the coordinates is 0, for example (1 1 0), c₀ is ∞, therefore that plane never cross the direction c).
3- Identify the points a₀, b₀, and c₀ at the plane that crosses this main directions and point them in the cubic cell.
4- Join the points.
To draw a direction in a simple cubic lattice, you have to follow these instructions:
1- Identify the points a₀, b₀, and c₀ in the cubic cell.
2- Draw the direction as a vector-like (a₀ b₀ c₀).
The term decision support system is a very specific term that implies the same tool, system, and development approach to most developers.
True/False
Answer:
FALSE: decision support system is an information system that supports business or organizational decision-making activities.
Explanation:
Decision support system is an information system that supports business or organizational decision-making activities. While, a computer program or tool that software developers use to create, debug, maintain, or otherwise support other programs and applications is known as software development tool.
Software development approach maybe Agile, Waterfall, Scrum, Extreme programming, Lean and Feature-Driven Development methodologies.
A) Fix any errors to get the following program to run in your environment. B) Document each line of code with comments and describe any changes you had to make to the original code to get it to work. C) Write a summary of what your final version of the program does.
You may also add white space or reorder the code to suit your own style as long as the intended function does not change.
#include
using namespace std;
void m(int, int []);
void p(const int list[], int arraySize)
{
list[0] = 100;
}
int main()
{
int x = 1;
int y[10];
y[0] = 1;
m(x, y);
cout << "x is " << x << endl;
cout << "y[0] is " << y[0] << endl;
return 0;
}
void m(int number, int numbers[])
{
number = 1001;
numbers[0] = 5555;
}
Answer:
Answer is explained below
Explanation:
Part A -:
Error statement -:
/*
prog.cpp: In function ‘void p(const int*, int)’:
prog.cpp:7:15: error: assignment of read-only location ‘* list’
list[0] = 100;
*/
There is one error in the code in following part
void p( const int list[], int arraySize)
{
list[0] = 100;
}
you are passing list as constant but changing it inside the function that is not allowed. if you pass any argument as const then you can't change it inside the function. so remove const from function argument solve the error.
Part B -:
change made
void p( int list[], int arraySize)
{
list[0] = 100;
}
Executable fully commented code -:
#include <iostream> // importing the iostream library
using namespace std;
void m(int, int []); // Function declearation of m
void p( int list[], int arraySize) // definition of Function p
{
list[0] = 100; // making value of first element of list as 100
}
int main()
{
int x = 1; // initilizing x with 1
int y[10]; // y is a array of 10 elements
y[0] = 1; // first element of y array is 1
m(x, y); // call m function
// printing the desired result
cout << "x is " << x << endl;
cout << "y[0] is " << y[0] << endl;
return 0;
}
void m(int number, int numbers[]) // Function definition of m
{
number = 1001; // value of number is 1001 locally
numbers[0] = 5555; // making value of first element of numbers array 5555
}
Part C :-
In program we initilize x with value 1 and create an array y of 10 elements.
we initilize the y[0] with 1\
then we call function m. In function m ,first argument is value of x and second argument is the pointer to the first element of array y.
so value of x is changed locally in function m and change is not reflected in main function.
but value of y[0] is changed to 5555 because of pass by refrence.
So we are getting the following result :-
x is 1
y[0] is 5555
Electrical failure can lead to ________failure, which in turn can lead to software failure.
Answer:
Electrical failure can lead to _hardware__failure, which in turn can lead to software failure
What are the challenges posed by strategic information systems, and how should they be addressed?
Answer:
Explanation:
Implementing strategic system requires extensive organizational change coupled with a period of changing from one stage of socio-technical level to another. This changes are known as strategic transitions and are not easily achieved.
It must be noted that not all strategic systems are rewarding and can be very expensive to put together. It is easier to copy most information systems from other firms because strategic advantage can be most times unsustainable.
How far do you jog each morning? You prefer to jog in different locations each day and do not have a pedometer to measure your distance. Create an application to determine the distance jogged given the average number of strides ran during the fist minute, average number ran during the last minute, and the total minutes jogging. Design a modularized solution (with methods) to display the distance traveled. Pedometers measure the distance you run. However, you can also do a good estimate of the distance if you know your foot stride, how many strides you complete per minute, and the number of minutes you job. Foot stride is the distance covered by one average step length. Since everyone has a different foot size, strides differ. Manny people average 3 feet per setup when jogging. For this application, assume the foot stride is 2.5 feet. There are 5,280 feet in a mile. To establish how many strides per minutes, allow the user to input the number of strides made during the first minute jogging and the number of strides made string the last minutes of jogging. Use the average of those values to represent the strides per minute. Allow the user to input the total time spent jogging in hours and minutes. Write code that will display to distance traveled in miles.
Answer:
The program is given below with appropriate comments for better understanding
Explanation:
#Program
# foot stride = 2.5 feet
# 1 mile = 5280 feet
no_stride_first_min = int(input('Enter the number strides made durng the first minute of jogging: '))
no_stride_last_min = int(input('Enter the number strides made durng the last minute of jogging: '))
avg_stride_one_min = (no_stride_first_min + no_stride_last_min)/2 # calculates the average stride per minute
jogging_duration = float(input('Enter the total time spent jogging in hours and minute: '))
jogging_duration_hours = int(jogging_duration) # gets the hour
jogging_duration_min = jogging_duration - int(jogging_duration) # gets the minute
tot_jogging_duration_min = jogging_duration_hours*60 + jogging_duration_min # calculates total time in minutes
dist_feet = (avg_stride_one_min*2.5)*tot_jogging_duration_min # calculates the total distance in feet
dist_miles = dist_feet/5280 # calculates the total distance in mile
print('Distance traveled in miles = {0:.2f} miles'.format(dist_miles))
During an actual run with the calorimeter, there are two important criteria which must be satisfied by a correctly positioned thermometer. What are these two criteria?
Answer:
1. the bulb of the thermometer must be in the center of the lower calorimeter, about one inch from the bottom.
2.thermometer must face you to read
Explanation:
During an actual run with the calorimeter, there are two important criteria which must be satisfied by a correctly positioned thermometer. These two criteria include;
1. the bulb of the thermometer must be in the center of the lower calorimeter, about one inch from the bottom.
2. thermometer must face you to read
The thermometer must be fully immersed without touching the calorimeter’s sides or bottom and positioned to minimize heat exchange with the external environment to ensure accurate temperature readings.
When using a calorimeter, it is crucial to ensure that the thermometer is correctly positioned to obtain accurate measurements. The two important criteria for correctly positioning the thermometer in a calorimeter are:
1. Thermal Equilibrium:
- The thermometer must be fully immersed in the substance being measured (typically a liquid) without touching the sides or the bottom of the calorimeter. This ensures that the thermometer accurately reflects the temperature of the substance rather than the container.
- The immersion should be deep enough so that the thermometer's bulb is surrounded by the substance, allowing it to reach thermal equilibrium with the substance. This helps in obtaining a consistent and accurate temperature reading.
2. Minimize Heat Exchange with the Environment:
- The thermometer should be positioned in a way that minimizes heat exchange with the external environment. The calorimeter is designed to be an insulated system, so the thermometer should not introduce significant thermal disturbance.
- The top of the calorimeter should be closed or covered as much as possible to prevent heat loss or gain from the surroundings, which could affect the temperature reading. The thermometer should pass through a small hole or a sealed opening to maintain the insulation integrity of the calorimeter.
By adhering to these criteria, the thermometer can provide precise and reliable temperature measurements, which are essential for accurate calorimetric calculations.
One AA battery in a flashlight stores 9400 J. The three LED flashlight bulbs consume 0.5 W. How many hours will the flashlight last?
Answer:
time = 5.22 hr
Explanation:
Given data:
Energy of battery = 9400 J
Power consumed by three led bulb is 0.5 watt
we know Power is give as
[tex]Power = \frac{ energy}{time}[/tex]
plugging all value and solve for time
[tex]time = \frac{energy}{power}[/tex]
[tex]time = \frac{9400}{0.5}[/tex]
time = 18,800 sec
in hour
1 hour = 3600 sec
therefore in 18,800 sec
[tex]time = \frac{18800}{3600} = 5.22 hr[/tex]
The cart travels the track again and now experiences a constant tangential acceleration from point A to point C. The speeds of the cart are 13.2 ft/sft/s at point A and 17.6 ft/sft/s at point C. The cart takes 3.00 ss to go from point A to point C, and the cart takes 1.90 ss to go from point B to point C. What is the car's speed at point B?
Answer:
15.99 ft/s
Explanation:
From Newton's equation of motion, we have
v = u + at
v = Final speed
u = initial speed
a = acceleration
t = time
now
for the points A and C
v = 17.6 ft/s
u = 13.2 ft/s
t = 3 s
thus,
17.6 = 13.2 + a(3)
or
3a = 17.6 - 13.2
3a = 4.4
or
a = 1.467 m/s²
Thus,
For Points A and B
v = speed at B i.e v'
u = 13.2 ft/s
a = 1.467 ft/s²
t = 1.90 s
therefore,
v' = 13.2 + (1.467 × 1.90 )
v' = 13.2 + 2.7867
v' = 15.9867 ≈ 15.99 ft/s
What is the weakest link in the security of an IT infrastructure? What are some of the strategies for reducing the risks?
Answer:
The weakest link is the people of the organization
The employees should be oriented and educated on the need to be security and safety conscious
Explanation:
Security professional had shown that negligence among the employees for security practices is a serious threat to end point security.
Write a C program that will update a bank balance. A user cannot withdraw an amount ofmoney that is more than the current balance. The current balance must always be non-negativevalue. The variable types must be selected wisely. A sample run is below. The user’s response is in boldface (C by discovery)BANK ACCOUT PROGRAM!----------------------------------Enter the old balance: 1234.50Enter the transactions now.Enter an F for the transaction type when you are finished.Transaction Type (D=deposit, W=withdrawal, F=finished): DAmount: 568.34Transaction Type (D=deposit, W=withdrawal, F=finished): WAmount: 25.68Transaction Type (D=deposit, W=withdrawal, F=finished): WAmount: 167.40Transaction Type (D=deposit, W=withdrawal, F=finished): FYour ending balance is $1609.76Program is ending
Answer:
Explanation:
Sample output:
BANK ACCOUT PROGRAM!
----------------------------------
Enter the old balance: 1234.50
Enter the transactions now.
Enter an F for the transaction type when you are finished.
Transaction Type (D=deposit, W=withdrawal, F=finished): D
Amount: 568.34
Transaction Type (D=deposit, W=withdrawal, F=finished): W
Amount: 25.68
Transaction Type (D=deposit, W=withdrawal, F=finished): W
Amount: 167.40
Transaction Type (D=deposit, W=withdrawal, F=finished): F
Your ending balance is $1609.76
Program is ending
Code to copy:
// include the necessary header files.
#include<stdio.h>
// Definition of the function
float withdraw(float account_balance, float withdraw_amount)
{
// Calculate the balace amount.
float balance_amount = account_balance - withdraw_amount;
// Check whether the withdraw amount
// is greater than 0 or not.
if (withdraw_amount > 0 && balance_amount >= 0)
{
// Assign value.
account_balance = balance_amount;
}
// return account_balance
return account_balance;
}
// Definition of the function deposit.
float deposit(float account_balance, float deposit_amount)
{
// Check whether the deposit amount is greater than zero
if (deposit_amount > 0)
{
// Update account balance.
account_balance = account_balance + deposit_amount;
}
// return account balance.
return account_balance;
}
int main()
{
// Declare the variables.
float account_balance;
float deposit_amount;
float withdrawl_amount;
char input;
// display the statement on console.
printf("BANK ACCOUT PROGRAM!\n");
printf("----------------------------------\n");
// prompt the user to enter the old balance.
printf("Enter the old balance: ");
// Input balance
scanf("%f", &account_balance);
// Display the statement on console.
printf("Enter the transactions now.\n");
printf("Enter an F for the transaction type when you are finished.\n");
// Start the do while loop
do
{
// prompt the user to enter transaction type.
printf("Transaction Type (D=deposit, W=withdrawal, F=finished): ");
// Input type.
scanf(" %c", &input);
// Check if the input is D
if (input == 'D')
{
// Prompt the user to input amount.
printf("Amount: ");
// input amount.
scanf("%f", &deposit_amount);
// Call to the function.
account_balance=deposit(account_balance,deposit_amount);
}
// Check if the input is W
if (input == 'W')
{
printf("Amount: ");
scanf("%f", &withdrawl_amount);
// Call to the function.
account_balance = withdraw(account_balance,withdrawl_amount);
}
// Check if the input is F
if (input == 'F')
{
// Dispplay the amount.
printf("Your ending balance is $%.2f\n", account_balance);
printf("Program is ending\n");
}
// End the while loop
} while(input != 'F');
return 0;
}
the picture uploaded below shows the program screenshot.
cheers, i hope this helps.
A unit cell has a lattice constant a, where a is the length of a single side of the unit cell. Draw a cube and derive the length of the diagonal from one top corner of the unit cell to the bottom far corner (ie. The largest distance between corners in a 3-D cube).
Answer:
The largest distance between corners in a 3-D cube = a root 3
Explanation : The detailed and step by step explanation is given in the attached file below.