What are the latitude and longitude coordinates of the entrance to the Mount Rushmore parking area?Latitude: 43.8753972, Longitude: -103.4523083

Answers

Answer 1

Answer:

The answer is already in the question. The coordinates of the entrance to the Mount Rushmore parking area are given by latitude 43.8753972 and longitude -103.4523083.

Step-by-step explanation:

I believe the person asking the question wants some other detail that s/he did not state explicitly.

Answer 2

Final answer:

The coordinates for the entrance to the Mount Rushmore parking area are Latitude: 43.8753972 and Longitude: -103.4523083, used for precise geographical positioning on Earth.

Explanation:

The latitude and longitude coordinates of the entrance to the Mount Rushmore parking area are as follows: Latitude: 43.8753972, Longitude: -103.4523083. These coordinates provide precise location details required to pin-point specific places on Earth using geographic positioning systems.

Latitude and longitude are measured in degrees, minutes, and seconds, with latitude representing the distance north or south of the equator and longitude representing the distance east or west of the Prime Meridian. When you search for landmarks such as the Washington Monument or use GPS coordinates to find a specific location, such as the Grand Canyon, you are utilizing these two fundamental geographic references to navigate and observe various parts of the world.


Related Questions

An airplane has a front nad a rear door that are bother openedto allow passengers to exit when the plane lands. the planehas 100 passengers seated. the number of passengers exitingthrought the front door shougl have

a) a binomial distribution with mean 50
b) a binomial distribution with 100 trials but successprobability not equal to .5
c)a normal didtribution with a standard deviation of5
d) none of the above

Answers

Answer:

a) a binomial distribution with mean 50

Step-by-step explanation:

Given that an  airplane has a front nad a rear door that are bother opened to allow passengers to exit when the plane lands. the plane has 100 passengers.

These 100 passengers can select either back door or front door with equal probability (assuming)

so probability for selecting front door = 0.5

No of passengers =100

Each passenger is independent of the other

Hence X no of passengers exiting through the front door is binomial with

p =0.5 and n =100

Mean of the variable X = np = 100(0.5) = 50

Variance of X = 100(0.5)(0.5)

Hence std dev = 10(0.5) = 5

So correct answers are

a) a binomial distribution with mean 50

PLEASE HELP!!!

Carol paid $0.78 per liter for gas while driving across Canada. Find the cost per gallon to the nearest cent.


Please give a step by step

Answers

Answer:

2.95 cent

Step-by-step explanation:

1 gallon = 231 cubic inches

1 litre = 1000ml = 61.0237 cubic inches

1 galloon = 231 / 61.0237 = 3.7854118 liters

if Carol paid $0.78 per litre

1 galloon = 0.78 x 3.7854118 = 2.952621204 ≅ 2.95 cent

Which represents a quadratic function?

f(x) = −8x3 − 16x2 − 4x

f (x) = three-quarters x 2 + 2x − 5

f(x) = StartFraction 4 Over x squared EndFraction minus StartFraction 2 Over x EndFraction + 1

f(x) = 0x2 − 9x + 7

Answers

Answer:

The answer to your question is the second option

Step-by-step explanation:

A Quadratic function is a polynomial of degree two. That means that the higher exponent is 2.

a) This option is incorrect because the highest power is 3 not two.

b) This option is the right answer, the highest power is 2, so, it is a quadratic function.

c) This option is incorrect, the highest power is -2.

d) This option is incorrect, the highest option is 1.

Answer:

Option 2 is the correct answer

Step-by-step explanation:

A quadratic function is a function in which the highest power to which the variable is raised is 2

1) f(x) = −8x3 − 16x2 − 4x

The given function is a cubic function because the highest power

to which the variable,x is raised is 3

2) f(x) = 3x²/4 + 2x - 5

The given function is a quadratic function because the highest power

to which the variable,x is raised is 2

3) f(x) = 4/x² - 2/x + 1

It can be rewritten as

f(x) = 4x^-2 - 2x^-1 + 1

The given function is not a quadratic function because the highest power to which the variable,x is raised is - 2

4) f(x) = 0x2 − 9x + 7

It can be rewritten as

f(x) = - 9x + 7

The given function is not a quadratic function because the highest power to which the variable,x is raised is 1

An SRS of 350 350 high school seniors gained an average of ¯ x = 22.61 x¯=22.61 points in their second attempt at the SAT Mathematics exam. Assume that the change in score has a Normal distribution with standard deviation σ = 53.63 . σ=53.63. We want to estimate the mean change in score μ μ in the population of all high school seniors. (a) Using the 68 68 – 95 95 – 99.7 99.7 Rule or the z - z- table (Table A), give a 95 % 95% confidence interval ( a , b ) (a,b) for μ μ based on this sample.

Answers

Answer:  (16.9914, 28.2286).

Step-by-step explanation:

The formula to find the confidence interval for population mean is given by :-

[tex]\overline{x}\pm z^*\dfrac{\sigma}{\sqrt{n}}[/tex]

, where [tex]\overline{x}[/tex] = Sample mean

[tex]\sigma[/tex]= Population standard deviation

n= Sample size.

z* = Critical value.

Let μ be the mean change in score  in the population of all high school seniors.

As per given ,  we have

n= 350

[tex]\overline{x}=22.61[/tex]

[tex]\sigma=53.63[/tex]

The critical z-value for 95% confidence interval is z*= 1.96 [From z-table]

Substitute all the value in formula , we get

[tex]22.61\pm (1.96)\dfrac{53.63}{\sqrt{350}}[/tex]

[tex]=22.61\pm (1.96)\dfrac{53.63}{18.708287}[/tex]

[tex]=22.61\pm (1.96)(2.8666)[/tex]

[tex]=22.61\pm (5.6186)[/tex]

[tex]=(22.61-5.6186,\ 22.61+5.6186) =(16.9914,\ 28.2286)[/tex]

Hence, the 95% confidence interval for [tex]\mu[/tex] is (16.9914, 28.2286).

Factor the GCF out of the trinomial on the left side of the equation. (2 points: 1 for the GCF, 1 for the trinomial)2x^2 + 6x - 362(x^2 + 3x - 18)

Answers

Answer:

2(x+6)(x-3)

Step-by-step explanation:

Factor the GCF out of the trinomial on the left side of the equation.

[tex]2x^2 + 6x - 36 =2(x^2 + 3x - 18)[/tex]

Greatest common factor of 2, 6, 18 is 2

so GCF is 2

divide each term when we take out GCF 2

so [tex]2(x^2 + 3x - 18)[/tex]

now factor the trinomial

product is -18 and sum is +3

6 times -3 is -18  and 6-3=3

[tex]2(x^2+3x-18)\\2(x+6)(x-3)[/tex]

In a sample of 11 men, the mean height was 178 cm. In a sample of 30 women, the mean height was 167 cm. What was the mean height for both groups put together?

Answers

Answer:

I'm pretty sure it would be 345, just add the two 178 and 167

Find the vector representing the area of the triangle ABC where A=(4,5,6), B=(6,4,5) and C=(5,4,6) oriented so that it faces upward.

Answers

Answer: Area of triangle is √3 / 2

Step-by-step explanation:

The explanation can be found in the attached in picture

1. Suppose the coefficient matrix of a linear system of four equations in four variables has a pivot in each column. Explain why the system has a unique solution.
2. What must be true of a linear system for it to have a unique​ solution?
Select all that apply.
A. The system has no free variables.
B. The system has one more equation than free variable.
C. The system is inconsistent.
D. The system is consistent. Your answer is correct.
E. The system has at least one free variable.
F. The system has exactly one free variable.

Answers

Answer:its A

Step-by-step explanation:it was

Determine which matrices are in reduced echelon form and which others are only in echelon form. a. [Start 3 By 4 Matrix 1st Row 1st Column 1 2nd Column 0 3rd Column 0 4st Column 0 2nd Row 1st Column 0 2nd Column 2 3rd Column 0 4st Column 0 3rd Row 1st Column 0 2nd Column 0 3rd Column 1 4st Column 1 EndMatrix ]1 0 0 0 0 2 0 0 0 0 1 1 b. [Start 3 By 4 Matrix 1st Row 1st Column 1 2nd Column 0 3rd Column 1 4st Column 1 2nd Row 1st Column 0 2nd Column 1 3rd Column 1 4st Column 1 3rd Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 0 EndMatrix ]1 0 1 1 0 1 1 1 0 0 0 0 c. [Start 4 By 4 Matrix 1st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 0 2nd Row 1st Column 1 2nd Column 3 3rd Column 0 4st Column 0 3rd Row 1st Column 0 2nd Column 0 3rd Column 1 4st Column 0 4st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 1 EndMatrix ]

Answers

Answer:

Step-by-step explanation:

Check the attachment for the solution

Answer:

Echelon form.Reduced Echelon form.Neither.

Step-by-step explanation:

The objective is to determine which of the following matrices are in reduced echelon form and which others are only in echelon form. The given matrices are

                       [tex]\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0& 2 & 0 & 0 \\ 0& 0 & 1 & 1 \end{bmatrix}[/tex],  [tex]\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0& 1& 1 & 1 \\ 0& 0 & 0 & 0 \end{bmatrix}[/tex]  and   [tex]\begin{bmatrix} 0& 0 & 0 & 0 \\ 1& 3 & 0 & 0 \\ 0& 0 & 1 & 0 \\ 0& 0 & 0 & 1 \end{bmatrix}[/tex].

First, recall what is an echelon and reduced echelon form of a matrix.

A matrix is said to be in a Echelon form if

If there is any zero rows, all nonzero rows are placed above them;Each first non-zero entry in a row, which is the leading entry, is placed to the right of the leading entry of the row above it;All elements below the leading entry must be equal to zero in each column.

A matrix is said to be in  a Reduced Echelon form if

In each non-zero row, the leading entry is 1.In its column, each leading 1 is actually the only non-zero element.

A column that contains a leading 1 which is the only non-zero element is called a pivot column.

Now, let's have a look at the first matrix

                                 [tex]\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0& 2 & 0 & 0 \\ 0& 0 & 1 & 1 \end{bmatrix}[/tex]

As we can see, it doesn't have any zero rows. Each leading entry in a row is placed to the right of the leading entry from the row above and all elements below the leading entries in all columns are equal to zero. Therefore, this matrix is in an Echelon form.

In the second row, the leading entry is 2, not 1, so because of the first property of the Reduced Echelon form, it is not in a Reduced Echelon form.

Notice that it can be transformed to the Reduced Echelon form by multiplying the second row by [tex]\frac{1}{2}.[/tex]

The second matrix is

                                         [tex]\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0& 1& 1 & 1 \\ 0& 0 & 0 & 0 \end{bmatrix}[/tex]

There is a zero row, and all non-zero rows are placed above it. Each leading entry in a row, which is the first non-zero entry, is placed to the right of the entry of the row above it and all elements below the leading entry are equal to zero in each column, so it is in the Echelon form.

It is also in the Reduced Echelon form, since all non-zero rows the leading entry is 1 and it is the only non zero element in each column.

The least given matrix is

                                        [tex]\begin{bmatrix} 0& 0 & 0 & 0 \\ 1& 3 & 0 & 0 \\ 0& 0 & 1 & 0 \\ 0& 0 & 0 & 1 \end{bmatrix}[/tex]

This matrix doesn't satisfy the condition that if there is any zero-row, it must be below all other non-zero rows, so it is not in Echelon form.

A matrix that is not in an Echelon form, it is not in an Reduced Echelon form either.

Therefore, this matrix is not in an Reduced Echelon form.

how many ways are there to list the digits {1,2,2,3,4,5,6} so that identical digits are not in consecutive position?

Answers

Answer: 2520 ways

Step-by-step explanation:

7!/2!

Answer:

no

Step-by-step explanation:

Find the mean amount hospitals had to pay in wrong-site lawsuits. Round your answer to the nearest whole dollar.

Answers

Answer:

dont see much information here but as far as lawsuits go id aim for the highest answer

Step-by-step explanation:

_____________________________________

Samples of skin experiencing desquamation are analyzed for both moisture and melanin content. The results from 100 skin samples are as follows: melanin content high low moisture high 13 10 content low 47 30 Let A denote the event that a sample has low melanin content, and let B denote the event that a sample has high moisture content. Determine the following probabilities. Round your answers to three decimal places (e.g. 98.765).
a) P(A)
b) P(B)
c) P (A|B)
d) P (BA)

Answers

Answer: a. 0.40   b. 0.23  c . 0.435   d . 0.25

Step-by-step explanation:

                                   melanin      content    Total

                                            high   low

moisture   high                     13      10                23

content    low                       47      30                77

 Total                                   60      40               100

Let A denote the event that a sample has low melanin content, and let B denote the event that a sample has high moisture content.

a) Total skin samples has low melanin content = 10+30=40

P(A)=[tex]\dfrac{40}{100}=0.40[/tex]

b) Total skin samples has high moisture content = 13+10=23

P(B) =[tex]\dfrac{23}{100}=0.23[/tex]

c) A ∩ B =  Total skin samples has both low melanin content and high moisture content =10

P(A ∩ B) =[tex]\dfrac{10}{100}=0.10[/tex]

Using conditional probability formula , [tex]P (A|B)=\dfrac{P(A\cap B)}{P(B)}[/tex]

[tex]P (A|B)=\dfrac{0.10}{0.23}=0.434782608696\approx0.435[/tex]

d)  [tex]P (B|A)=\dfrac{P(A\cap B)}{P(A)}[/tex]

[tex]P (B|A)=\dfrac{0.10}{0.40}=0.25[/tex]

The stop-board of a shot-put circle is a circular arc 1.22 m in length. The radius of the circle is 1.06 m. What is the central angle?

Answers

Answer:

Central angle= 1.15 radians

Step-by-step explanation:

[tex]Arc\,\,length=s= 1.22\,m\\Radius=r=1.06\,m\\\\Central\,\, angle=\theta=?\\\\Using\\\\ s=r\theta\\\\\theta=\frac{s}{r}\\\\\theta= \frac{1.22}{1.06}\\\\\theta=1.15 \,rad[/tex]

A general 2x2 diagonal matrix has the form(a00b). Thus the two unknown real numbers a b are needed to specify each 2x2 diagonal matrix. In Exercises 11 16, how many unknown real numbers are needed to specify each of the given matrices
1. An upper triangular 2x2 matrix?
2.) An m × n matrix?

Answers

Answer:

1. 3, and 2. m x n

Step-by-step explanation:

1. for an upper triangular 2x2 matrix i.e. (a,0,c,d), three (03) unknown elements a, c, and d are needed to be specified.

2. for m x n matrix, m*n elements are needed to be specified.

Final answer:

To specify an upper triangular 2x2 matrix, 3 unknown real numbers are needed. For an m × n matrix, m × n unknown real numbers are required.

Explanation:

The question asks how many unknown real numbers are needed to specify each of the given matrices: an upper triangular 2x2 matrix, and an m × n matrix.

1. An Upper Triangular 2x2 Matrix

An upper triangular matrix has the form:

(a, b)
(0, c)

Thus, to specify an upper triangular 2x2 matrix, 3 unknown real numbers are needed: a, b, and c.

2. An m × n Matrix

An m × n matrix has m rows and n columns. To specify such a matrix, one needs m × n unknown real numbers, representing each element in the matrix.

Question 5 (Fill-In-The-Blank Worth 1 points)
(05.05 MC)
A system of equations is shown below:
6x - 5y = 5 ,
3x + 5y = 4
The x-coordinate of the solution to this system of equations is
Numerical Answers Expected!

Answers

Answer:

The x-coordinate of the solution to this system of equations is 1.

Step-by-step explanation:

Given,

[tex]6x - 5y = 5\\\\3x + 5y = 4[/tex]

We have to find out the x-coordinate of the equation.

Solution,

Let [tex]6x-5y=5\ \ \ \ equation\ 1[/tex]

Again let [tex]3x+5y=4\ \ \ \ \ equation \ 2[/tex]

Now using elimination method we will solve the equations.

For this we will add equation 1 and equation 2 and get;

[tex](6x-5y)+(3x+5y)=5+4\\\\6x-5y+3x+5y=9\\\\9x=9[/tex]

Now on dividing both side by '9' we get;

[tex]\frac{9x}{9}=\frac{9}{9}\\\\x=1[/tex]

Hence The x-coordinate of the solution to this system of equations is 1.

1

ur welcome homie

poggers

Evaluate the limit using the appropriate Limit Law(s). (If an answer does not exist, enter DNE.) lim x→8 1 + 3 x 5 − 6x2 + x3

Answers

Answer:

[tex] [tex] lim_{x \to 8} (1+3\sqrt{x})(1-6x^2 +x^3)[/tex]=[tex]1-384 +512+3\sqrt{8} -18(8)^{5/2} +3 (8)^{7/2} =1223.601[/tex]

And the limit on this case exists.

Step-by-step explanation:

We want to find the following limit:

[tex] lim_{x \to 8} (1+3\sqrt{x})(1-6x^2 +x^3)[/tex]

First we can distribute the polynomials like this:

[tex] lim_{x \to 8} (1-6x^2 +x^3+3\sqrt{x} -18 x^{5/2} +3x^{7/2})[/tex]

And Now we can use the distributive property for the limit and we got:

[tex] lim_{x \to 8} 1 - 6 lim_{x \to 8} x^2 + lim_{x \to 8} x^3 +3 lim_{x \to 8} \sqrt{x} -18 lim_{x \to 8} x^{5/2} + 3 lim_{x \to 8} x^{7/2}[/tex]

And now we can evaluate the limit and we got:

[tex] [tex] lim_{x \to 8} (1+3\sqrt{x})(1-6x^2 +x^3)[/tex]=[tex]1-384 +512+3\sqrt{8} -18(8)^{5/2} +3 (8)^{7/2} =1223.601[/tex]

And the limit on this case exists.

Final answer:

To solve limit problems in mathematics, limit laws are often very useful. In this specific case, as the function is a polynomial and defined for all real number values, a direct substitution of x=8 into the function is sufficient. Therefore, the limit as x approaches 8 for function 1 + 3x5 - 6x2 + x3 is calculable.

Explanation:

In the field of mathematics, limit laws are used quite frequently for evaluating limits. In this case, we want to calculate the limit as x approaches 8 for the function 1 + 3x5 - 6x2 + x3.

For a given polynomial function like this one, an easy and very straightforward approach is to substitute the value x is approaching (in this scenario, x = 8) directly into the polynomial function.

So, after substitution, our function becomes: 1 + 3*(8)^5 - 6*(8)^2 + (8)^3. Simplifying it further, the limit as x approaches 8 of this function gives us a definite numeric value.

Always remember while applying limit laws, you might at times need the limit laws to evaluate complex limit problems but in this given scenario, direct substitution works perfectly fine because this polynomial function is defined for all real number values of X.

Learn more about Limit Laws here:

https://brainly.com/question/32518634

#SPJ3

10- [6-2•2 + (8-3)]•2

Answers

Answer:

10-[6-4+(5)]×2

10-[2+5]×2

10-(7)×2

10-14= -4

A student who has created a linear model is disappointed to find that herR2 value is a very low 13%. a) Does this mean that a linear model is not appropriate? Explain. b) Does this model allow the student to make accurate predictions? Explain.

Answers

Answer:

a) No it doesn't mean that linear model is inappropriate

b) No. The prediction using this model will not be accurate.

Step-by-step explanation:

a)

For answering this part, firstly consider the concept of [tex]R^{2}[/tex]

The [tex]R^{2}[/tex] also known as coefficient of determination is used to determine the amount of variability in dependent variable is explained by the linear model. Lower [tex]R^{2}[/tex] depicts that less variation of dependent is explained by the independent variable using the linear model. The linearity of model is determined by scatter plot. Thus, if the [tex]R^{2}[/tex] is lower, it doesn't mean that linear model is inappropriate.

b)

The predictions made by the model having lower [tex]R^{2}[/tex] value are erroneous. The model is used for prediction if the linear model explains the larger portion of variability in dependent variation. If the predictions made from the model that have lower [tex]R^{2}[/tex] value then the predicted values will not be close to the actual value and thus residuals will not be minimum as residuals are the difference of actual and predicted values.

Equations - Item 2829
The circumference (C) of a circle is 16 cm. Which formula can you use to find the
diameter (d) if you know that C = 3.14d?​

Answers

The formula is used to find the diameter of circle is: [tex]d = \frac{C}{3.14}[/tex]

The diameter of circle is 5.1 cm

Solution:

Given that,

Circumference (C) of a circle is 16 cm

The formula for circumference of circle when diameter is given is:

[tex]C = \pi d\\\\\pi \text{ is a constant equal to 3.14}\\\\C = 3.14d[/tex]

Rearrange the formula to get "d"

Divide both sides by 3.14

[tex]d = \frac{C}{3.14}[/tex]

The above formula is used to find the diameter of circle

Given that, circumeference = C = 16 cm

Substituting we get,

[tex]d = \frac{16}{3.14}\\\\d = 5.095 \approx 5.1[/tex]

Thus diameter of circle is 5.1 cm

Assume that about 30% of all U.S. adults try to pad their insurance claims. Suppose that you are the director of an insurance adjustment office. Your office has just received 140 insurance claims to be processed in the next few days. What is the probability that from 45 to 47 of the claims have been padded?

a. 0.222
b. 0.167
c. 0.119
d. 0.104
e. 0.056

Answers

Answer:

For x=45

sample proportion=45/140=0.321

z=(0.321-0.30)/sqrt(0.3*(1-0.3)/140)

z=0.54

For x=47

sample proportion=47/140=0.336

z=(0.336-0.30)/sqrt(0.3*(1-0.3)/140)

z=0.93

Now,

P(0.54<z<0.93)=P(z<0.93)-P(z<0.54)

=0.8238-0.7054

=0.118

So,correct option is 0.119

Find the sales tax and total cost of a Sony Playstation that costs $172.99. The tax rate is
4%. Round your answer to the nearest cent.

Answers

Answer:

all work is shown and pictured

Answer:The total cost of the Sony Playstation is $179.9096

Step-by-step explanation:

The initial or regular cost of the Sony Playstation is $172.99.

The tax rate is 4%. Therefore, the value of the sales tax would be

4/100 × 172.99 = 0.04 × 172.99 = $6.9196

The total cost of the Sony Playstation would be the sum of the regular price and the sales tax. It becomes

172.99 + 6.9196 = $179.9096

Philip ran out of time while taking a multiple-choice test and plans to guess on the last 444 questions. Each question has 555 possible choices, one of which is correct. Let X=X=X, equals the number of answers Philip correctly guesses in the last 444 questions. Assume that the results of his guesses are independent.

What is the probability that he answers exactly 1 question correctly in the last 4 questions?

Answers

Answer:

There is a 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.

Step-by-step explanation:

For each question, there are only two possible outcomes. Either it is correct, or it is not. This means that we use the binomial probability distribution to solve this problem.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinatios of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

In this problem we have that:

There are four questions, so n = 4.

Each question has 5 options, one of which is correct. So [tex]p = \frac{1}{5} = 0.2[/tex]

What is the probability that he answers exactly 1 question correctly in the last 4 questions?

This is [tex]P(X = 1)[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 1) = C_{4,1}*(0.2)^{1}*(0.8)^{3} = 0.4096[/tex]

There is a 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.

Answer:

0.41

Step-by-step explanation:

kahn

For each part, give a relation that satisfies the condition. a. Reflexive and symmetric but not transitive b. Reflexive and transitive but not symmetric c. Symmetric and transitive but not reflexive

Answers

Answer:

For the set X = {a, b, c}, the following three relations satisfy the required conditions in (a), (b) and (c) respectively.

(a) R = {(a,a), (b,b), (c, c), (a, b), (b, a), (b, c), (c, b)} is reflexive and symmetric but not transitive .

(b) R = {(a, a), (b, b), (c, c), (a, b)} is reflexive and transitive but not symmetric .

(c) R = {(a,a), (a, b), (b, a)} is symmetric and transitive but not reflexive .

Step-by-step explanation:

Before, we go on to check these relations for the desired properties, let us define what it means for a relation to be reflexive, symmetric or transitive.

Given a relation R on a set X,

R is said to be reflexive if for every [tex]a \in X, (a,a) \in R[/tex].

R is said to be symmetric if for every [tex](a, b) \in R, (b, a) \in R[/tex].

R is said to be transitive if [tex](a, b) \in R[/tex] and [tex](b, c) \in R[/tex], then [tex](a, c) \in R[/tex].

(a) Let R = {(a,a), (b,b), (c, c), (a, b), (b, a), (b, c), (c, b)}.

Reflexive: [tex](a, a), (b, b), (c, c) \in R[/tex]

Therefore, R is reflexive.

Symmetric: [tex](a, b) \in R \implies (b, a) \in R[/tex]

Therefore R is symmetric.

Transitive: [tex](a, b) \in R \ and \ (b, c) \in R[/tex] but but (a,c) is not in  R.

Therefore, R is not transitive.

Therefore, R is reflexive and symmetric but not transitive .

(b) R = {(a, a), (b, b), (c, c), (a, b)}

Reflexive: [tex](a, a), (b, b) \ and \ (c, c) \in R[/tex]

Therefore, R is reflexive.

Symmetric: [tex](a, b) \in R \ but \ (b, a) \not \in R[/tex]

Therefore R is not symmetric.

Transitive: [tex](a, a), (a, b) \in R[/tex] and [tex](a, b) \in R[/tex].

Therefore, R is transitive.

Therefore, R is reflexive and transitive but not symmetric .

(c) R = {(a,a), (a, b), (b, a)}

Reflexive: [tex](a, a) \in R[/tex] but (b, b) and (c, c) are not in R

R must contain all ordered pairs of the form (x, x) for all x in R to be considered reflexive.

Therefore, R is not reflexive.

Symmetric: [tex](a, b) \in R[/tex] and [tex](b, a) \in R[/tex]

Therefore R is symmetric.

Transitive: [tex](a, a), (a, b) \in R[/tex] and [tex](a, b) \in R[/tex].

Therefore, R is transitive.

Therefore, R is symmetric and transitive but not reflexive .

Relation from the set of two variables is subset of certain product. The relation for the condition are,

[tex]R_1\;\;\;\;\ (1,1), (1,2),,(2,1), (2,2),(2,3)((3,2),3,3)[/tex]

[tex]R_2\;\;\;\;\ (1,1), (2,2),,(3,3)(1,3)3,1)[/tex]

[tex]R_3\;\;\;\;\ (1,2),,(2,1), ,(2,3)((3,2)[/tex]

Relation-

Relation from the set of two variables is subset of certain product. Relation are of three types-

ReflexiveSymmetricTransitive

1) Reflexive and symmetric but not transitive -

Let a data set as,

[tex]X=1,2,3[/tex]

For the data set the relation can be given as,

[tex]R_1\;\;\;\;\ (1,1), (1,2),,(2,1), (2,2),(2,3)((3,2),3,3)[/tex]

[tex]R_1[/tex] is reflexive as it can be represent as [tex]R_1(a,a)[/tex] for,

[tex]a=1,2,3, \;\;\;\;\; [/tex]

[tex]a[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is symmetric as it can be represent as [tex]R_1(a,b)[/tex] for,

[tex]a,b \;\;\;\;(1,2) (2,1)[/tex]

[tex]a,b[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is not transitive as it can be represent as [tex]R_1\neq (a,c)[/tex] .

[tex]a,c\neq \;\;\;\;(1,3) (3,1)[/tex]

2)  Reflexive and transitive but not symmetric

Let a data set as,

[tex]X=1,2,3[/tex]

For the data set the relation can be given as,

[tex]R_2\;\;\;\;\ (1,1), (2,2),,(3,3)(1,3)3,1)[/tex]

[tex]R_2[/tex] is reflexive as it can be represent as [tex]R_2(a,a)[/tex] for,

[tex]a=1,2,3, \;\;\;\;\; [/tex]

[tex]a[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is transitive as it can be represent as [tex]R_1(a,c)[/tex] for,

[tex]a,c \;\;\;\;(1,3) (3,1)[/tex]

[tex]a,c[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is not symmetric as it can be represent as [tex]R_1\neq (a,b)[/tex] .

[tex]a,b\neq \;\;\;\;(1,2) (2,1)[/tex]

3) Symmetric and transitive but not reflexive

Let a data set as,

[tex]X=1,2,3[/tex]

For the data set the relation can be given as,

[tex]R_3\;\;\;\;\ (1,2),,(2,1), ,(2,3)((3,2)[/tex]

[tex]R_1[/tex] is symmetric as it can be represent as [tex]R_3(a,b)[/tex] for,

[tex]a,b=(1,2),(2,1) \;\;\;\;\; [/tex]

[tex]a,b[/tex] ∈ [tex]X[/tex]

[tex]R_3[/tex] is transitive as it can be represent as [tex]R_3(a,c)[/tex] for,

[tex]a,c \;\;\;\;(1,3) (3,1)[/tex]

[tex]a,c[/tex] ∈ [tex]X[/tex]

[tex]R_1[/tex] is not reflexive as it can be represent as [tex]R_3\neq (a,a)[/tex] .

[tex]a,a\neq \;\;\;\;(1,1) [/tex]

Thus the relation for the condition are,

[tex]R_1\;\;\;\;\ (1,1), (1,2),,(2,1), (2,2),(2,3)((3,2),3,3)[/tex]

[tex]R_2\;\;\;\;\ (1,1), (2,2),,(3,3)(1,3)3,1)[/tex]

[tex]R_3\;\;\;\;\ (1,2),,(2,1), ,(2,3)((3,2)[/tex]

Learn more about the Reflexive, symmetric and transitive relation here;

https://brainly.com/question/1581464

Suppose the coefficient matrix of a linear system of four equations in four variables has a pivot in each column. Explain why the system has a unique solution. What must be true of a linear system for it to have a unique​ solution? Select all that apply.

Answers

If the coefficient matrix has a pivot in each column, it means that it is shaped like this:

[tex]A=\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right][/tex]

So, the correspondant system

[tex]Ax = b[/tex]

will look like this:

[tex]\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]\cdot \left[\begin{array}{c}x_1\\x_2\\x_3\\x_4\end{array}\right] = \left[\begin{array}{c}b_1\\b_2\\b_3\\b_4\end{array}\right][/tex]

This turn into the following system of equations:

[tex]\begin{cases}a_{1,1}x_1+a_{1,2}x_2+a_{1,3}x_3+a_{1,4}x_4=b_1\\a_{2,2}x_2+a_{2,3}x_3+a_{2,4}x_4=b_2\\a_{3,3}x_3+a_{3,4}x_4=b_3\\a_{4,4}x_4=b_4\end{cases}[/tex]

The last equation is solvable for [tex]x_4[/tex]: we easily have

[tex]x_4=\dfrac{b_4}{a_{4,4}}[/tex]

Once the value for [tex]x_4[/tex] is known, we can solve the third equation for [tex]x_3[/tex]:

[tex]x_3 = \dfrac{b_3-a_{3,4}x_4}{a_{3,3}}[/tex]

(recall that [tex]x_4[/tex] is now known)

The pattern should be clear: you can use the last equation to solve for [tex]x_4[/tex]. Once it is known, the third equation involves the only variable [tex]x_3[/tex]. Once

indicate if the following systems are lineare or non linjear systems d^2x/dt+5dx/dt+10x = 0

Answers

Answer: You have only provided one Differential Equation (DE), it looks like you intended listing more.

The equation you wrote contains an incorrect d²x/dt, it is likely to be d²x/dt² + 5dx/dt + 10x = 0, which is linear. Unless it is (dx/dt)² + 5dx/dt + 10x = 0, then it is nonlinear.

Not to worry though, I will explain what linear and nonlinear DE's are.

Step-by-step explanation:

LINEAR DE: This is the kind of DE in which the functions of the dependent variable are linear. There are no powers of the dependent variable and/or its derivatives, there are no products of the dependent variable and its derivative, there are no functions of the dependent variable like cos, sin, exp, etc.

Example:

* 5d²x/dt² + dx/dt - x = 2t

This is linear, as it satisfies all the conditions.

NONLINEAR DE: If any condition explained for linear DE is not satisfied, then it is called nonlinear.

Example:

* d²x/dt² - sinx = 0

This is nonlinear because of the presence of sinx.

* d²x/dt² + xdx/dt = 0

This is nonlinear because of the product of the dependent variable, x, and its derivative, dx/dt.

* d²x/dt² + x² = 0

This is nonlinear because a function of the dependent variable is not linear. You shouldn't have x².

* (dx/dt)³ + 3dx/dt = 0 is equally nonlinear. You can't have nonlinear functions of the dependent variable or its derivatives.

I hope this helps answer the remaining parts of your question.

Which relationship is a direct variation?

Answers

Answer:

A relationship is said to have direct variation when one variable changes and the second variable changes proportionally; the ratio of the second variable to the first variable remains constant. For example, when y varies directly as x, there is a constant, k, that is the ratio of y:x.

Find the equation of the plane that is parallel to the vectors left angle 3 comma 0 comma 3 right angle and left angle 0 comma 1 comma 3 right angle​, passing through the point (2 comma 0 comma negative 1 ).

Answers

Answer:

[tex]x + 3y -z - 3 = 0[/tex]      

Step-by-step explanation:

We have to find the equation of plane that is parallel to the vectors

[tex]\langle 3,0,3\rangle, \langle0,1,3\rangle[/tex]

The plane also passes through the point (2,0,-1).

Hence, the equation of plane s given by:

[tex]\displaystyle\left[\begin{array}{ccc}x-2&y-0&z+1\\3&0&3\\0&1&3\end{array}\right]\\\\=(x-2)(0-3) - (y-0)(9-0) + (z+1)(3-0)\\=-3(x-2)-9y+3(z+1)\\\Rightarrow -3x + 6 - 9y + 3z + 3 = 0\\\Rightarrow 3x + 9y -3z -9 = 0\\\Rightarrow x + 3y -z - 3 = 0[/tex]

It is the required equation of plane.

The following scores represent the results of a midterm exam in Statistics class. 25 35 43 44 47 48 54 55 56 57 59 62 63 65 66 68 69 69 71 72 72 73 74 76 77 77 78 79 80 81 81 82 83 85 89 92 93 94 97 98 a) Find the lower and upper quartiles for the data. b) Find the interquartile range. c) Construct a boxplot for this data set.

Answers

Answer:

a.

lower Quartile= 57.5

Upper Quartile=81

b.

23.5

c.

box-plot is attached in excel file

Step-by-step explanation:

The data is arranged in ascending order so, the lower quartile denoted as Q1 can be calculated as under

Q1=((n+1)/4)th score=(41/4)th score=(10.25)th score

Q1=10th score+0.25(11th-10th)score

Q1=57+0.25(59-57)=57+0.5=57.5

Q1=57.5

The data is arranged in ascending order so, the third quartile denoted as Q3 can be calculated as under

Q3=(3(n+1)/4)th score=(3*41/4)th score=(30.75)th score

Q3=30th score+0.75(31th-30th)score

Q3=81+0.75(81-81)=81+0=81

Q3=81

b)

Interquartile range=IQR=Q3-Q1=81-57.5=23.5

IQR=23.5

c)

The box-plot is made in excel and it shows no outlier. The box-plot shows the 5-number summary(minimum-Q1-median-Q3-maximum) as 25-57.5-72-81-98.

You are certain to get 3 jacks when selecting 51 cards from a shuffled deck. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.

Answers

Final answer:

The question pertains to calculating the probability of drawing exactly 3 jacks from 51 randomly drawn cards from a 52-card deck. While the probability is very high, it's not an absolute certainty. The exact calculations involve complex combinatorial mathematics.

Explanation:

The subject of this question pertains to probability in mathematics, specifically to calculate the likelihood of drawing 3 jacks when selecting 51 cards from a shuffled deck of 52 cards.

First off, we need to understand that in a well-shuffled 52-card deck, there are 4 Jacks. Even if you select 51 out of 52 cards, there isn't a guarantee that you will select 3 jacks because the selection is random. The scenario you provided indicates a nearly certain event (since you're pulling nearly all the cards), but it still isn't an absolute certainty.

The exact probability computation for this kind of problem are more complex as they would involve combinatorial calculations. For simplicity, let's consider a similar but simpler scenario. Let's assume you are drawing just 4 cards instead. The probability of getting exactly 3 Jacks would be a combination of the probability of picking a Jack, and the probability of picking a non-Jack card. This would be calculated as (C(4,3) * C(48,1)) / C(52,4), with C representing the combination formula. This gives us how many ways we can draw 3 Jacks and a non-Jack divided by how many ways we can draw any 4 cards.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Final answer:

The probability of drawing 3 jacks from a standard deck of 52 cards when selecting 51 is 1 (certainty), as it is a guaranteed event given the conditions.

Explanation:

The question asks about the probability of a certain event occurring when dealing with a standard deck of 52 cards. In this case, the event is being certain to get 3 jacks when selecting 51 cards out of 52. Since there are 4 jacks in the deck, and upon drawing 51 cards you're left with only 1 card that is not drawn, it is guaranteed that you'll have the 3 jacks among the drawn cards.

Hence, the probability is 1 (certainty), as there is only one card you're not drawing and 4 chances to have drawn a jack, which means you will always end up with all 3 jacks among the chosen 51 cards.

A student earned grades of Upper AA​, Upper DD​, Upper AA​, Upper CC​, and Upper BB. Those courses had the corresponding numbers of credit hours 44​, 22​, 22​, 33​, and 11. The grading system assigns quality points to letter grades as​ follows: Aequals=​4; Bequals=​3; Cequals=​2; Dequals=​1; Fequals=0. Compute the grade point average​ (GPA) as a weighted mean and round the result with two decimal places. If the​ Dean's list requires a GPA of 3.00 or​ greater, did this student make the​ Dean's list? The grade point average is nothing. ​(Round to two decimal places as​ needed.) Did this student make the​ Dean's list? A. Yes because at least two of the student grades are B or above B. No because the students GPA is not 4.0 C. NoNo because the student has at least one grade lessless than 3 D. NoNo because the​ student's GPA is lessless than 3.0

Answers

Answer:

The grade point average is 2.92The student didn't make the​ Dean's list because the​ student's GPA is less than 3.0

Step-by-step explanation:

I take the grades as A,D,A,C,B not AA​,DD​,AA​,CC​,BB.I take numbers of credit hours as 4,2,2,3,1 not as 44​, 22​, 22​, 33​, and 11.

Since quality points to letter grades are A=​4; B=​3; C=​2; D=​1; F=0, weighted mean is the sum of the qulity points times corresponding credit hours divided by the total credit hours:

[tex]\frac{(4*4) + (1*2) + (4*2) + (2*3) + (3*1)}{12}[/tex] ≈ 2.92

Since 2.92<3.0, the student is not in Dean's list.

Other Questions
Lower-level managers who possess _____ are effectively able to complete daily activities, and earn more credibility from their subordinates than comparable managers without them. What is the equation of the line that passes through the given pair points in slope-intercept form? a. (2, 5.1) and (1, 0.5) b. (2, 3) and (3, 4) Bob was recently promoted to the engineering manager position because of his knowledge and ability to perform all the functions required in the engineering department. Bob was promoted because of his______________. A point charge Q is located a short distance from a point charge 3Q, and no other charges are present. If the electrical force on Q is F, what is the electrical force on 3Q?a. 3Fb. 3Fc. F/3d. Fe. F/3 (c+5)^3 solve using binomial theorem Ms. Flores wants to know whether a new conditioning program improves the speed of the athletes she coaches. So with half of her students she uses the new program, and with the other half she trains them as usual. She then measures their speed to determine if the new program caused a difference in speed. The design can most accurately be classified as ______. PLEASE HELP!!! URGENT!!! WILL MARK BRAINLIESTB) A sample of gold (Au) has a mass of 72.04g. Calculate the number of atoms of gold (Au) in the sample. (Use your answer from Part A.) Show your work and highlight your final answer. Consider a= 2,5,1, b= 5,2,5 and c= 1,5,4. Find the angles between the following vectors: The angle between a and b is: The first law of thermodynamics states that . How is this also a statement of the principle of conservation of energy?A. A change in internal energy causes work to be done and heat to flow into the system.B. The heat that flows into the system is transformed into work and a change in internal energy.C. The energy that flows into the system is transformed into heat and work.D. The work that is done by the piston is transformed into heat and a change in internal energy. The vapor pressure of Substance X is measured at several temperatures: temperature vapor pressure Use this information to calculate the enthalpy of vaporization of X. Round your answer to 2 significant digits. Be sure your answer What computer is designed to meet the computing needs of several people simultaneously in a small to medium-size business environment? A liquid has a specific gravity of 1.1 at room temperature. What is its (a) Density at room temperature in kg/m3 (b) Specific volume at room temperature in ft3/lbm? (c) If the liquid is placed in a 2 L bottle that has a mass of 157 g, how much will the full bottle weigh? In the Mercator projection, which piece of the Earth is portrayed ridiculously large in comparison to its actual size? Darwin developed his theory of natural selection despite having an incomplete and/or inaccurate knowledge base from which to work. Which of the following were problems for Darwin? You notice that over the past month, many students on campus have started wearing a new style of school sweatshirt. You think to yourself that perhaps the bookstore has recently started selling this new sweatshirt style. This prediction is an example of A) an experimental question. B) a type of observation. C) a hypothesis. D) an experiment. E) a type of control. Which of the following statements concerning the process of spontaneous folding of proteins is false?1) It may be an essentially random process.2) It may involve initial formation of local secondary structure.3) It may involve initial formation of a highly compact state.4) It may involve a gradually decreasing range of conformational species.5) It may be defective in some human diseases. Help! Will give brainliest. Giving customers more value for the money by satisfying their expectations on key quality features, performance, and/or service attributes while beating their price expectations is a____________ Country A and Country B both recorded an increase in real GDP of 5 percent per year from 1980 to 2012. During this time, the population for Country A grew at 6 percent per year and the population for Country B grew at 4 percent. Which of the following is true during this period? Champlain's Successful ColonyWhy was Champlain's colony successful?O Champlain defeated all the nearby American Indians in war,O A fur trade with American Indians was successfully established,O American Indians gave the colonists gifts to help them survive.DONE Answer is B A fur trade with American Indians was successful established. Steam Workshop Downloader