A blank is any disturbance that carries energy from one place to another through matter and space.
A wave
A wave is any form of a disturbance that carries energy from one place to another through a matter and space
Explanation;Waves carry energy from one point, the source to another point or place. The transmission of a wave may occur through the space or through a material medium. Electromagnetic waves are those waves whose transmissions occurs through the space, they do not require material medium for transmission,for example, radio waves, while mechanical waves are those that require material medium for transmission, for example sound waves.The energy of wave depends on the frequency of the wave and the wavelength of that particular wave.Explanation:
A wave is a disturbance that carries energy from one place to another through matter and space.
When we through a stone or a pebble in calm water, then the particles of water moves up and down and this process continues for some time. This implies that there is a disturbance produced in water.
The wave can be described using second-order linear partial differential equation. It is termed as wave equation.
There are many types of waves like the transverse wave and the longitudinal waves.
The ice in his drink has a mass of 6 g and a volume of 20 cm3. what is the density of the ice?
What force is exerted on a machine?
input force :) k have a good day
1. How many correct experiments do we need to disprove a theory? How many do we need to prove a theory? Explain.
2. A guidebook describes the rate of climb of a mountain trail as 120 meters per kilometer. How can you express this as a number with no units?
Disproving a theory requires just one contradicting experiment while proving a theory involves numerous supporting experiments. The mountain trail's rate of climb, 120 meters per kilometer, is expressed as a dimensionless number 0.12 after dividing meters by kilometers. Theory validation is based on predictive success and scientific acceptance, whereas a model's validity can be more limited in scope.
Understanding Theory Validation and Rate Expression
In the context of scientific theories, disproving a theory typically requires only one definitive experiment that provides evidence contradicting the theory's predictions. In stark contrast, proving a theory is a more complex process. A theory cannot be proven in an absolute sense; it can only be supported by a preponderance of evidence. This involves numerous experiments that consistently validate the theory's predictions.
When expressing the rate of climb of a mountain trail, which is described as 120 meters per kilometer, we are dealing with a simple ratio. To express this as a dimensionless number, we divide the number of meters by the number of kilometers, understanding that 1 kilometer equals 1000 meters. The resulting figure is 0.12, which is the gradient or incline of the trail without any units.
The validity of a theory is determined by how well it predicts and explains phenomena in the natural world. Theories are considered more valid if they have been thoroughly tested and widely accepted in the scientific community. For a model to be considered valid, it doesn't need to be universally applicable; it must effectively represent the phenomena for which it was designed. In contrast, a theory is generally expected to have wider applicability.
The stars and planets are made of _______.
A. dark energy
B. dark matter
C. baryonic material
A girl delivering newspapers covers her route by traveling 2.00 blocks west, 3.00 blocks north, and then 7.00 blocks east.
(a) What is her resultant displacement?
____blocks at ____° north of east
(b) What is the total distance she travels?
____blocks ...?
You plan a car trip for which you want to average 90 km/h. You cover the first half of the distance at an average speed of only 48 km/h. What must your average speed be in the second half of the trip to meet your goal?
Final answer:
The average speed for the second half of the trip needs to be 90 km/h.
Explanation:
To find the average speed you need to consider the total distance and total time.
In this case, let's assume the total distance is d kilometers. So, the first half of the distance is d/2 kilometers.
The first half is covered at an average speed of 48 km/h, which means it takes (d/2) / 48 hours to cover the first half.
To meet the goal of averaging 90 km/h for the entire trip, the average speed for the second half needs to be enough to cover the remaining distance (d/2) with the remaining time (d/2) / 90 hours.
Therefore, the average speed for the second half of the trip needs to be 90 km/h.
Our verbal and nonverbal _a______ provides clues to our attitude on a given topic.
What happens during evaporation
Scientists use the Celsius scale as the metric unit of temperature. t/f
Scientists use the Celsius scale as the metric unit of temperature.
True, scientists primarily use the Celsius scale in many scientific contexts for temperature measurements. The Kelvin scale is also commonly used for absolute temperature measurements.
Mountains formed by two colliding continents often contain marine _______ rock. A. sedimentary B. igneous C. metamorphic D. limestone
The correct answer is;
A. sedimentary
Mountains formed by two colliding continents often contain marine SEDIMENTARY rock.
Explanation:
This suggests that if they strike, regularly mounts come from out of the sea and actuate vertically up. This indicates that sedimentary marine rocks ultimately become non-marine rocks because they're not in the sea anymore so they can be located on before-mentioned mountains.
Mountains formed by two colliding continents often contain marine SEDIMENTARY rock.
An airplane is heading due south at a speed of 600 km h. If a wind begins blowing from the
southwest at a speed of 100 km h (average), calculate: (a) the velocity (magnitude and direction) of the plane relative to the ground ...?
To calculate the velocity of the plane relative to the ground, add up the x and y components of the plane's velocity and the wind velocity. Find the magnitude and direction of the resultant velocity using the Pythagorean theorem and trigonometry.
Explanation:To calculate the velocity of the plane relative to the ground, we need to consider the vector sum of the plane's velocity and the wind velocity. We can break down the velocity vectors into their x and y components. The plane's velocity is due south, so its x component is 0 km/h and its y component is -600 km/h. The wind velocity is blowing from the southwest, which can be represented as 45 degrees south of west. Its x component is -100*cos(45) km/h and its y component is -100*sin(45) km/h. Now we can add up the x and y components to find the resultant velocity vector. The x component is 0 + (-100*cos(45)) km/h and the y component is -600 + (-100*sin(45)) km/h. Finally, we can find the magnitude and direction of the resultant velocity vector using the Pythagorean theorem and trigonometry. The magnitude is sqrt(x^2 + y^2) km/h and the direction can be found using the arctan(y/x) function.
Learn more about velocity of the plane relative to the ground here:https://brainly.com/question/31037622
#SPJ12
How many significant figures are in 25.030 , 0.006 070 , 1.004 and 1.3005 20 and why ?
Answer:
Explanation:
The significant figures are defined as the figures that give the value and information of the accuracy of a measurement. The zero is the number that can have two behaviors if it is to the right of us numbers is significant since it gives an idea of the precision of the meditation, but if it is on the left and only serves to indicate the position of the decimal point it is not significant ; All of us numbers are always significant.
Using the above statements we will shrink the significant numbers numbers:
number Significant description
figure
25.030 5 all significant, zero right indicates measurement accuracy
0.006070 4 zeros to the left of the “6” indicate position of the decimal point, they are not significant
1,004 4 all significant
1.300520 7 all significant, zero right indicates accuracy is significant
What does the physics equation EF=0 mean?
Equation ΣF=0 refers total force applied on the body is zero. The forces acting on a body are referred to as balanced forces when the sum of all the forces acting on the body equals zero.
What is force?The definition of force in physics is: The push or pull on a massed object changes its velocity.
An external force is an agent that has the power to alter the resting or moving condition of a body. It has a direction and a magnitude. The application of force is the location at which force is applied, and the direction in which the force is applied is known as the direction of the force.
Equation ΣF=0 refers total force applied on the body is zero.
The forces acting on a body are referred to as balanced forces when the sum of all the forces acting on the body equals zero.
Learn more about force here:
https://brainly.com/question/13191643
#SPJ2
Your question is incomplete. But most probably, the question was:
What does the physics equation ΣF=0 mean?
Jack tries to place magnets on the door of his refrigerator. He observes that the magnets don’t stick. He guesses that the door of the refrigerator is made of a nonmagnetic substance. What stage of scientific investigation does his guess represent?
Answer:
Constructing a Hypothesis
Explanation:
Jack already made his observation (magnet doesnt stick). After that Jack then guesses that the fridge was made of nonmagnetic substance. Now he must construct a hypotesis.
How Close to the edge of a 20kg table, can a 66kg person sit without tipping it over?
The table is 2.2m long and there are two legs placed 0.5 m from each end of the table. with 1.2 meters between the two legs. the top of the table is 0.80 m tall
Answer:
0.318 m
Explanation:
If the moment due to the person’s weight is equal to the moment due to weight of table, table will not tip over.
Moment due to table = Moment due to person ………… (i)
Moment due to table = (20)(9.8)(0.6) = 117.6 Nm
Moment due to person = (66)(9.8)(0.5-x) = 323.4 – 646.8x Nm
Where, x is the distance of person from the edge.
By putting values in equation (i),
117.6 = 323.4 – 646.8x
solving for x,
x = 0.318 m
A car has an engine which delivers a constant power. It accelerates from rest at time t = 0, and at t = t0 its acceleration is a0. What is its acceleration at t = 2t0? Ignore energy loss due to friction. ...?
The acceleration a0 at time t0 in a car with a constant power engine will be greater than the acceleration at time 2t0. Due to the increased velocity over time, the acceleration decreases when power is constant, because power is the product of force and velocity.
Explanation:A car with a constant power engine accelerates from rest. If the acceleration at time t = t0 is a0, then the car's acceleration at time t = 2t0 will be different because the speed has increased, and acceleration is inversely proportional to velocity when power is constant. Since power (P) is equal to force (F) times velocity (v), and acceleration (a) is force divided by mass (m), as v increases, a must decrease if P is constant.
To calculate the exact acceleration, we would need to integrate the power over time to find velocity as a function of time and then differentiate to find the acceleration. However, without specific numerical values or additional information about the mass of the car or the constant power delivered by the engine, we cannot provide a precise numerical answer. Conceptually, the acceleration at time t = 2t0 is less than the acceleration at time t = t0 if the engine delivers constant power.
Julie throws a ball to her friend Sarah. The ball leaves Julie's hand a distance 1.5 meters above the ground with an initial speed of 16 m/s at an angle 47 degrees; with respect to the horizontal. Sarah catches the ball 1.5 meters above the ground.
What is the maximum height the ball goes above the ground?
What is the total number of components into which a single force can be reso
Final answer:
A single force can be resolved into two components, typically horizontal and vertical, and the process of doing so is known as resolution of a force. Diagrams are useful for visualizing these components.
Explanation:
The total number of components into which a single force can be resolved is typically two: the horizontal and vertical components. When dealing with vector quantities like force, the resultant vector can be found by adding together these two components. The process of finding these components is known as resolution of a force. It is important to analyze the individual components to understand the effect of the force in different directions.
For example, consider a force represented by the vector F having horizontal and vertical components . If F has a magnitude of 50 N at an angle θ from the horizontal, its components can be calculated using trigonometry:
[tex]F_{x}[/tex] = Fcos(θ) and [tex]F_{y}[/tex]= Fsin(θ).
In which situation would you see a partial lunar eclipse ?
A.the entire moon passes through earth shadow
B.the moon passes between earth and the sun
C.a portion of the moon passes through earths shadow
D.the moon lies completely outside of earths shadow
Answer: The correct answer is Option C.
Explanation:
Lunar eclipse is defined as the condition which arises when moon passes behind Earth to its shadow.
Partial lunar eclipse arises when a portion of moon passes through Earth to its shadow and total lunar eclipse arises when moon passes directly behind Earth's shadow.
Hence, the correct answer is Option C.
A barometer is used to measure air pressure. true or false.
Answer:
true
Explanation:
edge 2021
he graph below shows the velocity f(t) of a runner during a certain time interval:
graph of line going through ordered pairs 0, 4 and 4, 8. Graph of another line going through ordered pairs 4, 8 and 8, 0. Label on the x axis is time in second and label on the y axis is velocity in meter per second
Which of the following describes the intercepts on the graph?
The initial velocity of the runner was 4 m/s, and the runner stopped after 8 seconds.
The initial velocity of the runner was 8 m/s, and the runner stopped after 4 seconds.
The initial acceleration of the runner was 4 m/s2,
Answer is "the
initial velocity of the runner was 4 m/s, and the runner stopped after 8
seconds".
This is a velocity - time graph.
At t = 0 s, the graph
has a velocity as 4 m/s. This means,
the runner has an initial velocity as 4 m/s.
At t = 4 s, the runner
has reached his maximum velocity as 8 m/s and acceleration is 1 m/s².
After t = 4 s, the velocity has decreased with the
time means it is a negative acceleration.
At t = 8 s, the velocity of the runner has reached to zero means runner
has stopped after 8 seconds.
Compared to fossil fuels, conserving water is not very important.
True or false
the answer is the second option false
Answer:
false
Explanation:
Explain the difference between the degree measure of an arc and its arc length ...?
A block is suspended from the ceiling by a long, thin strip of tungsten metal. The strip behaves as a spring. To produce a 0.25m horizontal deflection of the block, a force of 6.5 N is required. Calculate the spring constant for the tungsten strip.
The spring constant for the tungsten strip is 26 N/m
[tex]\texttt{ }[/tex]
Further explanationHooke's Law states that the length of a spring is directly proportional to the force acting on the spring.
[tex]\boxed {F = k \times \Delta x}[/tex]
F = Force ( N )
k = Spring Constant ( N/m )
Δx = Extension ( m )
[tex]\texttt{ }[/tex]
The formula for finding Young's Modulus is as follows:
[tex]\boxed {E = \frac{F / A}{\Delta x / x_o}}[/tex]
E = Young's Modulus ( N/m² )
F = Force ( N )
A = Cross-Sectional Area ( m² )
Δx = Extension ( m )
x = Initial Length ( m )
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
Given:
extension of strip = x = 0.25 m
magnitude of force = F = 6.5 N
Asked:
the spring constant for the tungsten strip = k = ?
Solution:
We will use Hooke's Law to solve this problem:
[tex]F = k x[/tex]
[tex]6.5 = k \times 0.25[/tex]
[tex]k = 6.5 \div 0.25[/tex]
[tex]\boxed {k = 26 \texttt{ N/m}}[/tex]
[tex]\texttt{ }[/tex]
Learn moreYoung's modulus : https://brainly.com/question/6864866Young's modulus for aluminum : https://brainly.com/question/7282579Young's modulus of wire : https://brainly.com/question/9755626[tex]\texttt{ }[/tex]
Answer detailsGrade: College
Subject: Physics
Chapter: Elasticity
The graph in the figure shows the variation of the electric potential V(x) (in arbitrary units) as a function of the position x (also in arbitrary units). Which of the choices below correctly describes the orientation of the x-component of the electric field along the x-axis?
A. Ex is positive from x = -2 to x = 0, and negative from x = 0 to x = 2.
B. Ex is negative from x = -2 to x = 0, and positive from x = 0 to x = 2.
C. Ex is negative from x = -2 to x = 2.
D. Ex is positive from x = -2 to x = 2.
The electric field Ex along the x-axis is positive from x = -2 to x = 0, and negative from x = 0 to x = 2, as determined by the change in electric potential V(x) with respect to position x.
Explanation:The orientation of the electric field Ex along the x-axis is determined by the change in electric potential V(x) with respect to position x. According to the relationship between electric potential and electric field, if the electric potential decreases with increasing x, the electric field is positive, and vice versa. Hence, if we consider the given options, the correct answer should be Option A: Ex is positive from x = -2 to x = 0, and negative from x = 0 to x = 2.
This is because for a positive electric field, the electric potential decreases with increasing position x, which corresponds to the behavior from x = -2 to x = 0. Similarly, a negative electric field corresponds to an increasing electric potential with increasing x, which aligns with the behavior from x = 0 to x = 2.
Learn more about Electric Field and Potential here:https://brainly.com/question/36365066
#SPJ12
Which of the following is the best definition of an isotope?
A. elements of the same kind with different numbers of neutrons
B. elements of the same kind that have lost electrons
C. elements of the same kind that have different electrical charges
...?
Answer:
A. elements of the same kind with different numbers of neutrons
Explanation:
As we know that an atom is represented by
[tex]_z^AX[/tex]
here we know that
z = atomic number
A = atomic number + number of neutrons
now if the number of neutrons in an atom is different but having same number atomic number then the combination of such group of atoms is known as isotopes.
So here we have
[tex]_z^{A_1}X, _z^{A_2}X[/tex]
so above is the example of isotopes
1. Which of the following does not need to be done when constructing a frequency
distribution?
A) select the number of classes desired
B) find the range
C) make the class width an even number
D) use classes that are mutually exclusive
2. What are the boundaries of the class 12-16?
A) 11.5 and 16.5
B) 10 and 18
C) 12 and 16
D) 4
3. Which of the following pairs of class limits would be appropriate for grouping the
numbers 12, 15, 10, and 17 ?
A) 9-13 and 13-17
B) 10-12 and 15-17
C) 10-12 and 13-17
D) 10-13 and 14-17
1. Which of the following does not need to be done when constructing a frequency
distribution?
A) select the number of classes desired
B) find the range
C) make the class width an even number
D) use classes that are mutually exclusive
2. What are the boundaries of the class 12-16?
A) 11.5 and 16.5
B) 10 and 18
C) 12 and 16
D) 4
3. Which of the following pairs of class limits would be appropriate for grouping the
numbers 12, 15, 10, and 17 ?
A) 9-13 and 13-17
B) 10-12 and 15-17
C) 10-12 and 13-17
D) 10-13 and 14-17
A student moves a box of books down the hall
by pulling on a rope attached to the box. The
student pulls with a force of 174 N at an angle
of 35.0 above the horizontal. The box has a
mass of 25.1 kg, and μk between the box and
the floor is 0.25.
The acceleration of gravity is 9.81 m/s2 .
Find the acceleration of the box.
Answer in units of m/s2 ...?
The acceleration of the box can be found by analyzing the forces acting on it. The net force in the horizontal direction is equal to the difference between the applied force and the force of friction. By applying Newton's second law of motion, we can solve for the acceleration of the box, which is found to be 3.94 m/s^2.
Explanation:To find the acceleration of the box, we need to analyze the forces acting on it. The student is pulling the box with a force of 174 N at an angle of 35 degrees above the horizontal. The weight of the box, which is the force due to gravity, can be found using the formula: weight = mass * acceleration due to gravity. In this case, the weight is (25.1 kg) * (9.81 m/s^2) = 245.931 N.
Next, we need to resolve the force applied by the student into horizontal and vertical components. The horizontal component can be found using the formula: F_horizontal = F * cos(angle). In this case, F_horizontal = 174 N * cos(35) = 143.089 N.
The net force acting on the box in the horizontal direction is the difference between the applied force and the force of friction. The force of friction can be found using the formula: force of friction = coefficient of friction * normal force. In this case, the normal force is equal to the weight of the box, so the force of friction = (0.25) * (245.931 N) = 61.483 N.
Finally, we can find the acceleration of the box using Newton's second law of motion, which states that force = mass * acceleration. In this case, the net force acting on the box is F_horizontal - force of friction, so the equation becomes: F_horizontal - force of friction = mass * acceleration.
Plugging in the values, we get: 143.089 N - 61.483 N = (25.1 kg) * acceleration. Solving for acceleration, we find that the acceleration of the box is 3.94 m/s^2.
Final answer:
The acceleration of the box is 5.66 m/s^2
Explanation:
To find the acceleration of the box, we need to split the applied force into horizontal and vertical components. The horizontal component of the force can be found by multiplying the magnitude of the force by the cosine of the angle:
Fhorizontal = 174 N * cos(35.0°) = 142.14 N
With the horizontal force and mass of the box, we can use Newton's second law to calculate the acceleration:
Fhorizontal = m * a
142.14 N = 25.1 kg * a
a = 142.14 N / 25.1 kg = 5.66 m/s2
Therefore, the acceleration of the box is 5.66 m/s2.
Which of the following best summarizes Dalton's atomic theory?
A. All matter is made of the same type of atoms.
B. All matter is made of atoms that may change the way in which they are combined during a chemical reaction.
C. All matter is made of atoms and atoms of one type of matter do not combine with atoms of other types of matter.
Which of the following best summarizes Dalton's atomic theory?
A. All matter is made of the same type of atoms.
B. All matter is made of atoms that may change the way in which they are combined during a chemical reaction.
C. All matter is made of atoms and atoms of one type of matter do not combine with atoms of other types of matter.
Answer:
B. All matter is made of atoms that may change the way in which they are combined during a chemical reaction.
Explanation:
Dalton stated that all matter has atoms which are the indestructible building blocks of matter.
Different types of substances have different types of atoms. The atoms vary in shape and size.
Compounds are substances which are formed by the combination of elements. They are formed by chemical processes.
Compound have a mixture of different atoms in a specific ratio.