Answer:
119 hundreths
Step-by-step explanation:
To Find: What is the product of 119 thousandths times 10?
Solution:
Thousandths can be represented in the fraction form as[tex]\frac{1}{1000}[/tex]
So, 119 thousandths = [tex]\frac{119}{1000}[/tex]
Now to find the product of 119 thousandths times 10
[tex]\Rightarrow \frac{119}{1000} \times 10[/tex]
[tex]\Rightarrow \frac{119}{100} [/tex]
Now hundreths can be represented in the fraction form as[tex]\frac{1}{100}[/tex]
So, [tex]\Rightarrow \frac{119}{100} [/tex] = 119 hundreths.
Hence the product of 119 thousandths times 10 is 119 hundreths.
Thus Option A is True.
yesterday's low temperature was -2.5 degrees celsius. today's low temperature is 5 times as low as yesterday's low temperature. what was the low temperature today?
Answer:
The temperature is -12.5 degrees Celsius.
Step-by-step explanation:
The daily maximum temperature, or high, describes how warm you can expect the air to be, usually from 7 a.m. to 7 p.m. The daily minimum temperature, or low, tells how much the air is expected to cool, usually overnight from 7 p.m. to 7 a.m.
Below are grades in a course and how many students earned each grade:
5 students earned an A,
8 students earned a B,
10 students earned a C,
3 students earned a D
and 2 students earned a F.
What percent passed the course with a C or better? (Round your answer to one decimal place.)
The percentage of students who passed the class with a C or better is 82.1%. This is found by adding the number of students who earned A, B, or C grades, dividing by the total number of students, and multiplying by 100.
Explanation:The subject is Mathematics, specifically a problem in percentages. First, we need to find the total number of students in the class. We add the number of students that earned each grade: 5 (A) + 8 (B) + 10 (C) + 3 (D) + 2 (F) = 28 students in total.
Next, we need to identify the number of students who passed the class with a C or better. This includes the students who earned an A, B, or C. Adding these numbers together gets us 5 (A) + 8 (B) + 10 (C) = 23 students.
Then, to find the percentage of students who passed the class, we divide the number of students who passed (23) by the total number of students (28) and then multiply by 100 to convert the result to a percentage. So the calculation is as follows: (23/28)*100 = 82.14. Rounded to one decimal place, that is 82.1%. Therefore, 82.1% of students passed the class with a grade of C or better.
Learn more about Percentages here:https://brainly.com/question/32197511
#SPJ2
The percent of students who passed the course with a C or better is: 82.14%
To find the percent of students who passed the course with a C or better, we need to divide the number of students who passed by the total number of students and multiply by 100%.
The number of students who passed is 5 + 8 + 10 = 23.
The total number of students is 5 + 8 + 10 + 3 + 2 = 28.
Therefore, the percent of students who passed the course with a C or better is:
(23 / 28) * 100% = 82.14%
Rounding to one decimal place, the answer is 82.1%.
For such more question on percent
https://brainly.com/question/26511030
#SPJ2
A basketball is thrown with an initial upward velocity of 25 feet per second from a height of 8 feet above the ground. The equation h=-16t^2+25t+8 models the height in feet t seconds after it is thrown. After the ball passes its maximum height, it comes down and then goes into the hoop at a height of 10 feet above the ground. About how long after it was thrown does it go into the hoop?
Answer:
A quadratic equation is in the form of [tex]ax^2+bx+c =0[/tex]........[1], then the solution for this equation is given by:
[tex]x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
As per the statement:
The equation is given by:
[tex]h=-16t^2+25t+8[/tex]
where, h is the height in feet t seconds after it is thrown.
After the ball passes its maximum height, it comes down and then goes into the hoop at a height of 10 feet above the ground.
⇒h = 10 feet
then;
[tex]-16t^2+25t+8=10[/tex]
Subtract 10 from both sides we have;
[tex]16t^2-25t+2=0[/tex]
On comparing this equation with [1] we have;
a =16 , b =-25 and c =2
then;
[tex]t= \frac{25 \pm \sqrt{(-25)^2-4(16)(2)}}{2(16)}[/tex]
⇒[tex]t= \frac{25 \pm \sqrt{625-128}}{32}[/tex]
⇒[tex]t= \frac{25 \pm \sqrt{497}}{32}[/tex]
as we want the time when it was falling so ,
[tex]t= \frac{25 + \sqrt{497}}{32}[/tex]
Simplify:
[tex]t \approx 1.48[/tex] sec
Therefore, 1.48 sec long after it was thrown does it go into the hoop
how do you solve this problem? I need help
You are hiking on a trail that leads to the top of a mountain. At 12 P.M. you reach an elevation of 3700 feet. At 4 P.M. you reach an elevation of 4500 feet. What is your mean hourly change in elevation?
Answer: 200 ft per hour
Step-by-step explanation:
Given : You are hiking on a trail that leads to the top of a mountain.
At 12 P.M. you reach an elevation of 3700 feet. At 4 P.M. you reach an elevation of 4500 feet.
The formula for the mean hourly change in elevation is :-
[tex]\dfrac{\text{Change in elevation}}{\text{Time in hours}}[/tex]
From the given information, the change in elevation=4500 ft-3700 ft= 800 ft
Time taken = 4 hours [From 12 pm to 4 pm]
Now, Mean hourly change in elevation=[tex]\dfrac{800}{4}=200[/tex]
Hence, the mean hourly change in elevation = 200 ft
Stacy is walking his dog on a path and his dog wiggled out of his collar. If the dog is 30 feet lower than the owner and the angle of elevation from the dog to the owner is 10 degrees, find the distance from the dog to the owner.
Find the polar coordinates of the points with cartesian coordinates (−x, y).
Suppose that it costs $25 to place a classified advertisement in the newspaper, plus $4 for each line. Then the cost to place an ad x lines long is given by y dollars, where y= 4x + 25.
express as an ordered pair the fact that a 14 line cost $81. _
Express as an ordered pair the fact that an ad costing $37 is 3 lines long. _
A video game sets the points needed to reach the next level based on the function g(x) = 7(3)^x − 1, where x is the current level. The hardest setting promises to multiply the points needed in each level according to the function h(x) = 4x. How many points will a player need on the hardest setting of level 4?
A player will need 2,264 points on the hardest setting of level 4 as calculated by evaluating g(4) using the function g(x) = 7(3)^x - 1 and then applying the function h(x) = 4x.
To calculate the number of points a player will need on the hardest setting of level 4, we need to consider the function h(x) = 4x provided in the context of the question. However, the question also mentions the function g(x) = 7(3)^x - 1, which indicates the points needed to reach the next level normally. Since we need to find the hardest setting value, we will use the function h(x) but before that, we need to evaluate g(4) to find out the base points at level 4.
To find g(4), we substitute x = 4 into g(x):
g(4) = 7(3)^4 - 1 = 7(81) - 1 = 567 - 1 = 566
Now we apply the function h(x) to this value to get the points on the hardest setting:
h(g(4)) = 4 × 566 = 2264
Therefore, a player will need 2,264 points on the hardest setting of level 4.
The units digit of a perfect square is 6. What are the possible values of the tens digit?
Final answer:
The tens digit of a perfect square with a units digit of 6 could be any digit from 0 to 9. This is because when numbers ending in either 4 or 6 are squared, the tens digit can take any value in the range of 0-9 due to the cyclic nature of the squares.
Explanation:
The units digit of a perfect square can be 6, and this occurs when a number ending in either 4 or 6 is squared since 42 is 16 and 62 is 36. Considering this, the possible values for the tens digit of a perfect square with a units digit of 6 could be derived from these squares. For the tens digit, we must look at the squares of numbers ending in 4 or 6 and check the ten's place of the resulting product.
For example, if we consider 142 (which is 196) and 162 (which is 256), the tens digit can be either 9 or 5. Continuing with this pattern for numbers ending in 4 or 6 all the way to 942 and 962, we find that the tens digit is cyclic and can be 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Therefore, all ten digits are possible for the tens place of a number whose square ends in 6.
Classify the four angles of the quadrilateral.
A
B
C
D
90°
105°
75°
90°
Right , Acute, Obtuse
∠A
∠B
∠C
∠D
All the angles of the quadrilateral are,
⇒ ∠A = Right angle
⇒ ∠B = Obtuse angle
⇒ ∠C = Acute angle
⇒ ∠D = Right angle
What is mean by Angle?An angle is a combination of two rays (half-lines) with a common endpoint. The latter is known as the vertex of the angle and the rays as the sides, sometimes as the legs and sometimes the arms of the angle.
Now, We know that;
Any angle which is greater than 90° is called obtuse angle and less than 90° is called acute angle and 90° is called Right angle.
Here, The four angles of the quadrilateral are,
⇒ ∠A = 90°
⇒ ∠B = 105°
⇒ ∠C = 75°
⇒ ∠D = 90°
Hence, We get;
⇒ ∠A = Right angle
⇒ ∠B = Obtuse angle
⇒ ∠C = Acute angle
⇒ ∠D = Right angle
Learn more about the angle visit:;
https://brainly.com/question/25716982
#SPJ2
Express the limit as a definite integral on the given interval. lim nââ n xi ln(1 + xi2) δx, [0, 3] i = 1
What is the next number?
3,4,6,9,13,18,24=
Dots sells a total of 267 T-shirts ($2) and shorts ($3). In April, total sales were $633.
How many T-shirts and shorts did Dots sell?
estimate the product 731+207
A brace for a shelf has the shape of a right triangle. Its hypotenuse is 8 inches long and the two legs are equal in length. How long are the legs of the triangle?
Find f(-5), if f(x) = -x^2 - 2x+1
Which is true?
A
5.4793 < 5.4812
B
5.2189 = 5.219
C
5.0359 > 5.0923
D
5.0167 < 5.0121
The length of a rectangle is 7 inches more than its width. The area of the rectangle is equal to 2 inches less than 5 times the perimeter . What is the length and width
How do you subtract an integer from another integer without using a number line or counters? Give an example.
Fill in the blanks to write the solutions to the quadratic equation. x2 + 2x + 10 = 0
Find the zeros of the function. f(x)=-3x^2+75
a plane takes 2hr to travel 1000mi with the wind. it can travel only 880mi against the wind in the same amount of time. find the speed of the wind and the speed of the plane in still air
If gasoline costs
2.50
2.50 euros per liter, it will cost $
how much
to drive
220 kilometers
Factor 2a^5b + 2a^4b^2 + 2a^3b^3.
A.)2a^2b(a^2+a
Question 1(Multiple Choice Worth 5 points) (04.03 MC) Because of the rainy season, the depth in a pond increases 3% each week. Before the rainy season started, the pond was 10 feet deep. What is the function that best represents the depth of the pond each week and how deep is the pond after 8 weeks? Round your answer to the nearest foot. Hint: Use the formula, f(x) = P(1 + r)x. f(x) = 10(0.03)x, 36 feet f(x) = 10(1.03)x, 14 feet f(x) = 10(1.3)x, 37 feet f(x) = 10(1.03)x, 13 feet
If Kendra started working at 10:30 a.m.and left at 6:15, how many hours of work should she record for the day on her time card
If the constant c is chosen so that the curve given parametrically by ct, c 2 8 t 2 , 0 ≤ t ≤ 3 , is the arc of the parabola 8y = x 2 from (0, 0) to (4, 2), find the coordinates of the point p on this arc corresponding to t = 2.
By solving the given equations using the provided information, and assuming the constant c = 4/3, we can find the coordinates of the point P on the curve corresponding to t = 2 are (8/3, 32/9). There is a probable discrepancy in the question which causes two different solutions for c, therefore making the canonical form of the parabola ambiguous.
Explanation:The given parametric curve has its equations as x = ct and y = c/8 * t^2. We're given that it's the arc of the parabola 8y = x^2 from (0, 0) to (4, 2), meaning that we can set x = ct = 4 and y = c/8 * t^2 = 2 when t=3 (the upper limit of t) to find the value of the constant c. Solving these equations gives c=4/3 and c=48. Since c must be the same in both equations, there seems to be a discrepancy here, which could possibly originate from a mistake in the question. However, if we only use c from the first equation (x = ct), we get c = 4/3.
The question asks for the coordinates of the point on the curve corresponding to t = 2. Substituting t = 2 into x = ct and y = c/8 * t^2 gives x = 8/3 and y = 32/9, assuming c = 4/3. So, the coordinates of the point would be (8/3, 32/9).
Learn more about Parametric Equations here:
https://brainly.com/question/37795536
#SPJ11
If I had 6 yellow fish and 7 blue fish, how many times can I make a pair?
Choose if the following function is even, odd or neither. f(x) = x^3